Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3387–3392 | Cite as

Microwave-assisted metathesis synthesis of Schoenfliesite-type MSn(OH)6 (M = Mg, Ca, Zn, and Sr) materials

  • Jonathan W. Kramer
  • Steven A. Isaacs
  • Venkatesan ManivannanEmail author
Article

Abstract

Technologically important Schoenfliesite type MSn(OH)6 (M = Mg, Ca, Zn, and Sr) materials were synthesized by a simple solid state metathesis (SSM) approach, assisted by microwave energy. The SSM nature of the reaction is strongly suggested by the formation of NaCl byproduct. The synthesized materials are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance (DR) in the UV–VIS range, to determine physical properties and establish structure–property relationships for these materials.

Keywords

Metathesis Diffuse Reflectance Spectrum Thermo Gravimetric Analysis Triglycine Sulfate Metathesis Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge Prof. Allan Kirkpatrick, Department Head, Mechanical Engineering, Colorado State University, for his continued help, encouragement, and support.

References

  1. 1.
    Bock O, Muller U (2002) Z Anorg Allg Chem 628:987CrossRefGoogle Scholar
  2. 2.
    Basciano LC, Peterson RC, Roeder L, Swainson I (1998) Can Mineral 36:1203Google Scholar
  3. 3.
    Trunz HS, Contag B (1960) Acta Crystallogr 12:601CrossRefGoogle Scholar
  4. 4.
    Jena H, Kutty KVG, Kutty TRN (2004) Mater Res Bull 39:4CrossRefGoogle Scholar
  5. 5.
    Jena H, Kutty KVG, Kutty TRN (2004) Mater Chem Phys 88:167CrossRefGoogle Scholar
  6. 6.
    Barchiche C, Rocca EE, Hazan J (2008) Surf Coat Technol 202:4145CrossRefGoogle Scholar
  7. 7.
    Hill J, Sharp H (2005) J Am Ceram Soc 88(3):560CrossRefGoogle Scholar
  8. 8.
    Kicko-Walczak E (1999) Polym Degrad Stab 64(3):439CrossRefGoogle Scholar
  9. 9.
    Moriga T, Watanabe D, Tsuji D, Massaki S, Nakabayashi J (2000) J Solid State Chem 153:386CrossRefGoogle Scholar
  10. 10.
    Connor PA, Irvine JTS (2001) J Power Sources 97–98:223CrossRefGoogle Scholar
  11. 11.
    Huang F, Yuan Z, Zhan Y, Zhou J (2004) Mater Chem Phys 83:16CrossRefGoogle Scholar
  12. 12.
    Bingfu L, Li B, Zhang H, Li W (2007) Opt Mater 29(11):1491CrossRefGoogle Scholar
  13. 13.
    Xu J, Yanli L, Xiu X (2002) Guisuanyan Xuebao 30(3):321Google Scholar
  14. 14.
    Inagaki T, Kuroishi T, Yamashita M, Urata M (2004) Z Anorg Allg Chem 527(8):193CrossRefGoogle Scholar
  15. 15.
    Sony Corporation (1985) Jpn Kokai Tokkyo Koho, Japanese Patent JP 60071525Google Scholar
  16. 16.
    Levy-Clement C, Morgenstern-Badarau I, Yves M, Michel A (1968) Comptes Rendus des Seances de l’Academie des Sciences, Series C: Sciences Chimiques 266(11):790Google Scholar
  17. 17.
    Levy-Clement C, Morgenstern-Badarau I, Yves M, Michel A (1967) Comptes Rendus des Seances de l’Academie des Sciences Series C: Sciences Chimiques 265(11):585Google Scholar
  18. 18.
    Morgrenstern-Badarau I, Yves M, Poix P, Michel A (1965) Compt Rend 260(13):3668Google Scholar
  19. 19.
    Ramamurthy P, Secco EA (1971) Can J Chem 49:2113CrossRefGoogle Scholar
  20. 20.
    Chen Di, Jinhua Ye (2007) Chem Mater 19:4585CrossRefGoogle Scholar
  21. 21.
    Leoni M, Viviani M, Nanni P, Buscaglia V (1996) J Mater Sci Lett 15:1302CrossRefGoogle Scholar
  22. 22.
    Yuan Z, Huang F, Sun J, Sun Y (2002) Chem Lett 43:408CrossRefGoogle Scholar
  23. 23.
    Lu Z, Tang Y (2005) Mater Chem Phys 92:5CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Guo M, Zhang M, Yang C, Ma T, Wang X (2007) J Cryst Growth 308:99CrossRefGoogle Scholar
  25. 25.
    Lu Z, Wang Y, Li J (2004) J Solid State Chem 177:3075CrossRefGoogle Scholar
  26. 26.
    Azad AM, Shyan LLW, Yen PT (1999) J Alloys Compd 282:109CrossRefGoogle Scholar
  27. 27.
    Bonneau PR, Jarvis RF, Kaner RB (1991) Nature 349:510 (and references therein)CrossRefGoogle Scholar
  28. 28.
    Wiley JB, Gillan EG, Kaner RB (1991) Nature 349:510CrossRefGoogle Scholar
  29. 29.
    Gillan EG, Kaner RB (2001) J Mater Chem 11(7):1951 (and references therein)CrossRefGoogle Scholar
  30. 30.
    Nartowski AM, Parkin IP, MacKenzie M, Craven AJ, Macleod I (1999) J Mater Chem 9:1275CrossRefGoogle Scholar
  31. 31.
    Gopalakrishnan T, Sivakumar K, Ramesha K, Thangadurai V, Subbabba GN (2000) J Am Chem Soc 122(26):6237 (and references therein)CrossRefGoogle Scholar
  32. 32.
    Mandal TK, Gopalakrishnan J (2004) J Mater Chem 14(8):1273CrossRefGoogle Scholar
  33. 33.
    Parkin IP (1996) Chem Soc Rev 199 (and references therein)Google Scholar
  34. 34.
    Ramesh PD, Rao KJ (1995) Adv Mater 7:177CrossRefGoogle Scholar
  35. 35.
    Vaidhyanathan B, Ganguli M, Rao KJ (1995) Mater Res Bull 30:1173CrossRefGoogle Scholar
  36. 36.
    Parhi P, Ramanan A, Ray AR (2007) J Am Ceram Soc 90:1237CrossRefGoogle Scholar
  37. 37.
    Parhi P, Ramanan A, Ray AR (2004) Mater Lett 58:3610CrossRefGoogle Scholar
  38. 38.
    Parhi P, Ramanan A, Ray AR (2006) Mater Lett 60:218CrossRefGoogle Scholar
  39. 39.
    Parhi P, Kramer JW, Manivannan V (2008) Mater Sci Eng B 153:53 (and references therein)CrossRefGoogle Scholar
  40. 40.
    Kubelka P, Munk F (1931) Z Tech Phys 12:593Google Scholar
  41. 41.
    Kortun G (1969) Reflectance spectroscopy principles method applications. Springer Verlag, New YorkCrossRefGoogle Scholar
  42. 42.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesa E (1999) J Phys Chem B 103:630CrossRefGoogle Scholar
  43. 43.
    Tauc J, Grigorov R, Vancu A (1966) Phys Status Solidi 15:627CrossRefGoogle Scholar
  44. 44.
    JCPDF files CaSn(OH)6: 00-009-0030, and ZnSn(OH)6: 01-073-2384, and SrSn(OH)6: 00-009-0086 ICDD, PCPDFWIN v.2.1, JCPDS—International Centre for Diffraction Data (2000)Google Scholar
  45. 45.
    Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds, vol B. Wiley, New York, p 57Google Scholar
  46. 46.
    Anicai L, Masi R, Santamaria M, Di Quarto F (2005) Corros Sci 47:2883CrossRefGoogle Scholar
  47. 47.
    Sahu BR, Kleinman L (2004) Phys Rev B 69:165202CrossRefGoogle Scholar
  48. 48.
    Knausengerger WH, Tauber RN (1973) J Electrochem Soc 129:927CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jonathan W. Kramer
    • 1
  • Steven A. Isaacs
    • 1
  • Venkatesan Manivannan
    • 1
    Email author
  1. 1.Department of Mechanical Engineering and Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations