Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3382–3386 | Cite as

Fabricating of silver and copper nano/microtubes using nano-scale glass fibers as templates

  • Xinghua YangEmail author
  • XiaoLiang Zhu
  • Libo Yuan
  • Jinghua Sun
  • YiJun Liang
Article

Abstract

In this paper, large-scale uniform silver and copper nano/microtubes with high length diameter ratios have been successfully synthesized by a facile approach, using low-cost nano-scale glass fibers as templates. The tubular structures can be obtained by reducing of Ag and Cu ions on the surface of the fibers, along with removing the templates. The samples are characterized by SEM and XRD. Results show the tubular structures are very uniform and the tubular walls are composed of densely coalesced crystalline nanoparticles of 30–50 nm.

Keywords

Glass Fiber SERS Cu2O Tubular Structure Glyoxal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 60437020) and Natural Science Foundation of Harbin Engineering University (No. 002110260748).

References

  1. 1.
    Virel A, Saa L, Valeri P (2009) Anal Chem 81:268CrossRefGoogle Scholar
  2. 2.
    Sarkar A, Mukherjee T, Kapoor S (2008) J Phys Chem C 112:3334CrossRefGoogle Scholar
  3. 3.
    Brown LO, Doorn SK (2008) Langmuir 24:2178CrossRefGoogle Scholar
  4. 4.
    Chen S, Yang Y (2002) J Am Chem Soc 124:5280CrossRefGoogle Scholar
  5. 5.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Adv Mater 13:1501CrossRefGoogle Scholar
  6. 6.
    Roppolo M, Jacobs CB, Upreti S (2008) J Mater Sci 43:4742. doi: https://doi.org/10.1007/s10853-007-2357-4 CrossRefGoogle Scholar
  7. 7.
    Wong KL, Law GL, Murphy MB, Tanner PA, Wong WT (2008) Inorg Chem 47:5190CrossRefGoogle Scholar
  8. 8.
    Bae Y, Kim NH, Kim M, Lee KY, Han SW (2008) J Am Chem Soc 130:5432CrossRefGoogle Scholar
  9. 9.
    Nourmohammadi A, Bahrevar MA, Schulze S (2008) J Mater Sci 43:4753. doi: https://doi.org/10.1007/s10853-008-2665-3 CrossRefGoogle Scholar
  10. 10.
    Heck KN, Janesko BG, Scuseria GE, Halas NJ, Wong MS (2008) J Am Chem Soc 130:16592CrossRefGoogle Scholar
  11. 11.
    Ohara S, Mousavand T, Sasaki T (2008) J Mater Sci 43:2393. doi: https://doi.org/10.1007/s10853-007-1823-3 CrossRefGoogle Scholar
  12. 12.
    Jain PK, El-Sayed MA (2007) Nano Lett 7:2854CrossRefGoogle Scholar
  13. 13.
    Tanabe K (2008) J Phys Chem C 112:15721CrossRefGoogle Scholar
  14. 14.
    Bai J, Zhou BX, Li LH (2008) J Mater Sci 43:1880. doi: https://doi.org/10.1007/s10853-007-2418-8 CrossRefGoogle Scholar
  15. 15.
    Graf C, Blaaderen AV (2002) Langmuir 18:524CrossRefGoogle Scholar
  16. 16.
    Charnay C, Lee A, Man SQ, Moran CE, Radloff C, Bradley RK, Halas NJJ (2003) Phys Chem B 107:7327CrossRefGoogle Scholar
  17. 17.
    Sun Y, Xia YN (2002) Anal Chem 74:5297CrossRefGoogle Scholar
  18. 18.
    Lu L, Zhang H, Sun G, Xi S, Wang H, Li X, Wang X, Zhao B (2003) Langmuir 19:9490CrossRefGoogle Scholar
  19. 19.
    Pol VG, Grisaru H, Gedanken A (2005) Langmuir 21:3635CrossRefGoogle Scholar
  20. 20.
    Zhang J, Liu J, Wang S, Zhan P, Wang Z, Ming N (2004) Adv Funct Mater 14:1089CrossRefGoogle Scholar
  21. 21.
    Zhang XY, Dong DH, Li D, Williams T, Wang HT, Webley PA (2009) Electrochem Commun 11:190CrossRefGoogle Scholar
  22. 22.
    Wang XW, Yuan ZH, Sun SQ, Duan YQ, Bie LJ (2008) Mater Chem Phys 112:329CrossRefGoogle Scholar
  23. 23.
    Velleman L, Shapter JG, Losic D (2009) J Membrane Sci 328(1–2):121CrossRefGoogle Scholar
  24. 24.
    Ayame A, Eimaeda S, Feng L, Hayasaka H (2006) Appl Catal A Gen 304:93CrossRefGoogle Scholar
  25. 25.
    Schaefers S, Rast L, Stanishevsky A (2006) Mater Lett 60:706CrossRefGoogle Scholar
  26. 26.
    Isse AA, Falciola L, Mussini PR, Gennaro A (2006) Chem Commun 3:344CrossRefGoogle Scholar
  27. 27.
    Lu L, Sui ML, Lu K (2000) Science 287:1463CrossRefGoogle Scholar
  28. 28.
    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Appl Phys Lett 78:718CrossRefGoogle Scholar
  29. 29.
    Salavati-Niasari M, Davar F (2009) Mater Lett 63:441CrossRefGoogle Scholar
  30. 30.
    Mohammadzadeh S, Pouladsaz D, Streiter R, Gessner T (2008) Microelectron Eng 85:1992CrossRefGoogle Scholar
  31. 31.
    Salzemann C, Urban J, Lisiecki I, Pileni MP (2005) Adv Funct Mater 15:1277CrossRefGoogle Scholar
  32. 32.
    Ren XL, Chen D, Tang FQ (2005) J Phys Chem B 109:15803CrossRefGoogle Scholar
  33. 33.
    Cong HL, Zhang MF, Cao WX (2005) Macromol Rapid Commun 26:734CrossRefGoogle Scholar
  34. 34.
    Jackson JB, Halas NJ (2001) J Phys Chem B 105:2743CrossRefGoogle Scholar
  35. 35.
    Cao MH, Hu CW, Wang YH, Guo YH, Guo CX, Wang EB (2003) Chem Commun 15:1884CrossRefGoogle Scholar
  36. 36.
    Gao P, Zhan CL, Liu MH (2006) Langmuir 22:775CrossRefGoogle Scholar
  37. 37.
    Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I (2006) Chem Commun 21:2236CrossRefGoogle Scholar
  38. 38.
    Yang XH, Shao CL, Liu YC (2007) J Mater Sci 42:8470. doi: https://doi.org/10.1007/s10853-007-1769-5 CrossRefGoogle Scholar
  39. 39.
    Liu ZP, Yang Y, Liang JB, Hu K, Li S, Peng P, Qian YT (2003) J Phys Chem B 107:12658CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xinghua Yang
    • 1
    Email author
  • XiaoLiang Zhu
    • 1
  • Libo Yuan
    • 1
  • Jinghua Sun
    • 1
  • YiJun Liang
    • 1
  1. 1.College of ScienceHarbin Engineering UniversityHarbinChina

Personalised recommendations