Journal of Materials Science

, Volume 44, Issue 12, pp 3285–3295

Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co–Mo catalyst

Article

Abstract

Co–Mo catalysts supported on four different high surface area oxides (SiO2, Al2O3, MgO, and TiO2) were evaluated to investigate the (n,m) selectivity control in single-walled carbon nanotube (SWCNT) synthesis. Results from Raman spectroscopy and thermogravimetric analysis showed that Co–Mo catalysts supported on SiO2 and MgO possessed good selectivity toward SWCNTs, while photoluminescence and ultraviolet–visible–near-infrared spectroscopy results indicated that these two catalyst supports induced the same (n,m) selectivity to near-armchair tubes, such as (6,5) and (7,5) tubes. Catalysts supported on TiO2 produced a mixture of multi-walled carbon nanotubes (MWCNTs) and SWCNTs, whereas catalysts supported on Al2O3 mainly grew MWCNTs. Characterization of catalysts by ultraviolet–visible diffuse reflectance spectroscopy suggested that the surface morphology of metal clusters over different supports was not directly responsible for the (n,m) selectivity. Analysis of monometallic (Co or Mo) and bimetallic (Co–Mo) catalysts using temperature program reduction demonstrated that catalyst supports changed the reducibility of metal species. The interaction between supports and Co/Mo metals perturbed the synergistic effect between Co and Mo, leading to the formation of different metal species that are responsible for the observed distinction in SWCNT synthesis.

References

  1. 1.
    Jorio A, Dresselhaus G, Dresselhaus MS (2008) In: Carbon nanotubes, advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, p 1Google Scholar
  2. 2.
    Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Top Appl Phys 111:101CrossRefGoogle Scholar
  3. 3.
    Hersam MC (2008) Nat Nanotechnol 3:387PubMedCrossRefADSGoogle Scholar
  4. 4.
    Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A (2007) Nat Nanotechnol 2:361PubMedCrossRefADSGoogle Scholar
  5. 5.
    Chen F, Wang B, Chen Y, Li L-J (2007) Nano Lett 7:3013PubMedCrossRefGoogle Scholar
  6. 6.
    Wei L, Wang B, Goh TH, Li L-J, Yang Y, Chan-Park MB, Chen Y (2008) J Phys Chem B 112:2771PubMedCrossRefGoogle Scholar
  7. 7.
    Lamouroux E, Serp P, Kalck P (2007) Cat Rev - Sci Eng 49:341CrossRefGoogle Scholar
  8. 8.
    Chen Y, Ciuparu D, Lim S, Haller GL, Pfefferle LD (2006) Carbon 44:67CrossRefGoogle Scholar
  9. 9.
    Chen Y, Wang B, Li L-J, Yang Y, Ciuparu D, Lim S, Haller GL, Pfefferle LD (2007) Carbon 45:2217CrossRefGoogle Scholar
  10. 10.
    Miyauchi YH, Chiashi SH, Murakami Y, Hayashida Y, Maruyama S (2004) Chem Phys Lett 387:198CrossRefADSGoogle Scholar
  11. 11.
    Ago H, Imamura S, Okazaki T, Saitoj T, Yumura M, Tsuji M (2005) J Phys Chem B 109:10035PubMedCrossRefGoogle Scholar
  12. 12.
    Lolli G, Zhang LA, Balzano L, Sakulchaicharoen N, Tan YQ, Resasco DE (2006) J Phys Chem B 110:2108PubMedCrossRefGoogle Scholar
  13. 13.
    Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu YT, Liu Z (2007) Nat Mater 6:283PubMedCrossRefADSGoogle Scholar
  14. 14.
    Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186PubMedCrossRefGoogle Scholar
  15. 15.
    Li X, Tu X, Zaric S, Welsher K, Seo WS, Zhao W, Dai H (2007) J Am Chem Soc 129:15770PubMedCrossRefGoogle Scholar
  16. 16.
    Wang B, Wei L, Yao L, Li LJ, Yang YH, Chen Y (2007) J Phys Chem C 111:14612CrossRefGoogle Scholar
  17. 17.
    Wang B, Poa CHP, Wei L, Li LJ, Yang YH, Chen Y (2007) J Am Chem Soc 129:9014PubMedCrossRefGoogle Scholar
  18. 18.
    Malgas GF, Arendse CJ, Cele NP, Cummings FR (2008) J Mater Sci 43:1020. doi:10.1007/s10853-007-2230-5 CrossRefADSGoogle Scholar
  19. 19.
    Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N (2008) J Am Chem Soc 130:9918PubMedCrossRefGoogle Scholar
  20. 20.
    Wen CY, Huang CC, Cheng HZ, Lu HY (2008) J Mater Sci 43:123. doi:10.1007/s10853-007-2122-8 CrossRefADSGoogle Scholar
  21. 21.
    Colomer JF, Bister G, Willems I, Konya Z, Fonseca A, Van Tendeloo G, Nagy JB (1999) Chem Commun 1343Google Scholar
  22. 22.
    Colomer JF, Stephan C, Lefrant S, Van Tendeloo G, Willems I, Konya Z, Fonseca A, Laurent C, Nagy JB (2000) Chem Phys Lett 317:83CrossRefADSGoogle Scholar
  23. 23.
    Hiraoka T, Kawakubo T, Kimura J, Taniguchi R, Okamoto A, Okazaki T, Sugai T, Ozeki Y, Yoshikawa M, Shinohara H (2003) Chem Phys Lett 382:679CrossRefADSGoogle Scholar
  24. 24.
    Cassell AM, Raymakers JA, Kong J, Dai HJ (1999) J Phys Chem B 103:6484CrossRefGoogle Scholar
  25. 25.
    Destree A, Long GJ, Vatovez B, Grandjean F, Fonseca A, Nagy JB, Fransolet AM (2007) J Mater Sci 42:8671. doi:10.1007/s10853-007-1808-2 CrossRefADSGoogle Scholar
  26. 26.
    Lim S, Ciuparu D, Pak C, Dobek F, Chen Y, Harding D, Pfefferle L, Haller G (2003) J Phys Chem B 107:11048CrossRefGoogle Scholar
  27. 27.
    Haller GL, Resasco DE (1989) Adv Catal 36:173CrossRefGoogle Scholar
  28. 28.
    Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE (2001) J Catal 204:129CrossRefGoogle Scholar
  29. 29.
    Shajahan M, Mo YH, Fazle Kibria AKM, Kim MJ, Nahm KS (2004) Carbon 42:2245CrossRefGoogle Scholar
  30. 30.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630CrossRefGoogle Scholar
  31. 31.
    Dresselhaus MS, Dresselhaus G, Jorio A (2007) J Phys Chem C 111:17887CrossRefGoogle Scholar
  32. 32.
    Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2004) Philos Trans R Soc Lond A 362:2311CrossRefADSGoogle Scholar
  33. 33.
    Rigby SJ, Al-Obaidi AHR, Lee S-K, McStay D, Robertson PKJ (2006) Appl Surf Sci 252:7948CrossRefADSGoogle Scholar
  34. 34.
    Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005) Chem Mater 17:6819CrossRefGoogle Scholar
  35. 35.
    Itkis ME, Perea DE, Jung R, Niyogi S, Haddon RC (2005) J Am Chem Soc 127:3439PubMedCrossRefGoogle Scholar
  36. 36.
    Tsyboulski DA, Rocha JDR, Bachilo SM, Cognet L, Weisman RB (2007) Nano Lett 7:3080PubMedCrossRefGoogle Scholar
  37. 37.
    Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Nat Nanotechnol 1:60PubMedCrossRefADSGoogle Scholar
  38. 38.
    Stakheev AY, Kustov LM (1999) Appl Catal A 188:3CrossRefGoogle Scholar
  39. 39.
    Lim S, Ciuparu D, Chen Y, Yang Y, Pfefferle L, Haller GL (2005) J Phys Chem B 109:2285PubMedCrossRefGoogle Scholar
  40. 40.
    Voss M, Borgmann D, Wedler G (2002) J Catal 212:10CrossRefGoogle Scholar
  41. 41.
    de Boer M, Koch EPFM, Blaauw RJ, Stobbe ER, Hoffmann ANJM, Boot LA, van Dillen AJ, Geus JW (1993) Solid State Ionics 63–65:736Google Scholar
  42. 42.
    Arnoldy P, De Jonge JCM, Moulijn JA (1985) J Phys Chem 89:4517CrossRefGoogle Scholar
  43. 43.
    Kaluza L, Gulkova D, Vit Z, Zdrazil M (2007) Appl Catal A 324:30CrossRefGoogle Scholar
  44. 44.
    Rajagopal S, Marini HJ, Marzari JA, Miranda R (1994) J Catal 147:417CrossRefGoogle Scholar
  45. 45.
    Wang HY, Ruckenstein E (2002) Carbon 40:1911CrossRefGoogle Scholar
  46. 46.
    Alvarez WE, Kitiyanan B, Borgna A, Resasco DE (2001) Carbon 39:547CrossRefGoogle Scholar
  47. 47.
    Ding F, Larsson P, Larsson JA, Ahuja R, Duan HM, Rosen A, Bolton K (2008) Nano Lett 8:463PubMedCrossRefGoogle Scholar
  48. 48.
    Reich S, Li L, Robertson J (2005) Phys Rev B 72:165423CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations