Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3356–3363 | Cite as

Characterization of mechanical properties of FeCrBSiMnNbY metallic glass coatings

  • J. B. ChengEmail author
  • X. B. Liang
  • B. S. Xu
  • Y. X. Wu
Article

Abstract

This article investigates mechanical characteristics of Fe-based metallic glass coatings. A series of the coatings were fabricated by conventional wire-arc spray process. The microstructure of the coating was characterized by means of X-ray diffraction, scanning election microscopy equipped with energy dispersive X-ray analysis, transmission electron microscopy, and differential scanning calorimeter. The coating is very dense smooth, adhering well and with no cracking. The microstructure of the coating consists of amorphous phase and α(Fe,Cr) nanocrystalline phase. The nanocrystalline grains with a size of 30 to 60 nm are homogenously dispersed in the amorphous phase matrix. The crystallization temperature of the amorphous phase is about 545 °C. The mechanical properties, such as porosity, adhesive strength, microhardness, elastic modulus, and abrasive wear resistance, were analyzed in detail. The experimental results indicate that the coating has high microhardness (15.74 GPa), high elastic modulus (216.97 GPa), and low porosity (1.7%). The average adhesive strength value of the coating is 53.6 MPa. The relationship between abrasive wear behavior and structure of the coating is discussed. The relatively wear resistance of metallic glass coating is about 7 and 2.3 times higher than that of AISI 1045 steel and 3Cr13 martensite stainless steel coating, respectively. The main failure mechanism of metallic glass coating is brittle failure and fracture. The Fe-based metallic glass coating has excellent wear resistance.

Keywords

Amorphous Phase Wear Surface Metallic Glass Amorphous Alloy Abrasive Wear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors are grateful for the support provided by Key Natural Science Foundation of China (50735006), National Key Laboratory for Remanufacturing (914OC85020508OC85), and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, People’s Republic of China (200802).

References

  1. 1.
    Schuh CA, Hufnagel TC, Ramamurty U (2007) Acta Mater 55:4067CrossRefGoogle Scholar
  2. 2.
    Inoue A, Shen BL, Chang CT (2004) Acta Mater 52:4093CrossRefGoogle Scholar
  3. 3.
    Inoue A, Shinohara Y, Gook JS (1995) Mater Trans JIM 36:1427CrossRefGoogle Scholar
  4. 4.
    Shen TD, Xchwarz RB (1999) Appl Phys Lett 75:49CrossRefGoogle Scholar
  5. 5.
    Pawlik P, Davies HA, Gibbs MRJ (2003) Appl Phys Lett 83:2775CrossRefGoogle Scholar
  6. 6.
    Wu X, Xu B, Hong Y (2002) Mater Lett 56:838CrossRefGoogle Scholar
  7. 7.
    Kobayashi A, Yano S, Kimura H et al (2008) Surf Coat Technol 202:2513CrossRefGoogle Scholar
  8. 8.
    Otsubo F, Kishitake K (2005) Mater Trans 46:80CrossRefGoogle Scholar
  9. 9.
    Ni HS, Liu XH, Chang XC et al (2009) J Alloys Compd 467:163CrossRefGoogle Scholar
  10. 10.
    Cherigui M, Fenineche NE, Ji G et al (2007) J Alloys Compd 427:281CrossRefGoogle Scholar
  11. 11.
    Ajdelsztajn L, Jodoin B, Richer P et al (2006) J Therm Spray Technol 15(4):495CrossRefGoogle Scholar
  12. 12.
    Sharma P, Zhang W, Amiya K, Kimura H, Inoue A (2005) J Nanosci Nanotechnol 5:416CrossRefGoogle Scholar
  13. 13.
    Liu D, Gao W, Li Z et al (2007) Mater Lett 61:165CrossRefGoogle Scholar
  14. 14.
    Thorpe ML (1993) Adv Mater Process 143(5):50Google Scholar
  15. 15.
    Newbery AP, Grant PS, Neiser RA (2005) Surf Coat Technol 195:91CrossRefGoogle Scholar
  16. 16.
    Miyoshi K, Buckley DH (1984) Thin Solid Films 118:363CrossRefGoogle Scholar
  17. 17.
    Masumoto T (1994) Mater Sci Eng A 179–180:8CrossRefGoogle Scholar
  18. 18.
    Boswell PG (1979) J Mater Sci 14:1505. doi: https://doi.org/10.1007/BF00549329 CrossRefGoogle Scholar
  19. 19.
    Fleury E, Lee SM, Ahn HS et al (2004) Mater Sci Eng A 276:375Google Scholar
  20. 20.
    Prakash B (2005) Wear 258:217CrossRefGoogle Scholar
  21. 21.
    Klinger R, Feller HG (1983) Wear 86:287CrossRefGoogle Scholar
  22. 22.
    Miyoshi K, Buckley DH (1983) ASLE Trans 27(4):295CrossRefGoogle Scholar
  23. 23.
    Moreton R, Lancaster JK (1985) J Mater Sci Lett 4:133CrossRefGoogle Scholar
  24. 24.
    Greer AL, Rutherford KL (2002) Int Mater Rev 47(2):87CrossRefGoogle Scholar
  25. 25.
    Standard test method for adhesion or cohesion strength of thermal spray coatings C 633-01 (2001) Annual book of ASTM standards, ASTMGoogle Scholar
  26. 26.
    Wu Y, Lin P, Xie G et al (2006) Mater Sci Eng A 430:34CrossRefGoogle Scholar
  27. 27.
    Ajdelsztajn L, Jodoin B, Richer P et al (2006) J Therm Spray Technol 15(4):495CrossRefGoogle Scholar
  28. 28.
    Ma Q, Roth J, Gandy DW et al (2006) J Therm Spray Technol 15(4):670CrossRefGoogle Scholar
  29. 29.
    Inoue A, Zhang T, Masumoto T (1989) Mater Trans JIM 30:965CrossRefGoogle Scholar
  30. 30.
    De Boer FR, Boom R, Mattens WCM et al (1989) Cohesion in metals: transition metal alloys. North-Holland, Amsterdam, The NetherlandsGoogle Scholar
  31. 31.
    Ponnambalam V, Poon SJ, Shiflet GJ (2004) J Mater Res 19:1320CrossRefGoogle Scholar
  32. 32.
    Georgieva P, Thorpe R, Yanski A et al (2006) Adv Mater Process 8:68Google Scholar
  33. 33.
    Gedzevicius I, Valiulis AV (2006) J Mater Process Technol 175:206CrossRefGoogle Scholar
  34. 34.
    Branagan DJ, Breitsameter M, Meacham BE et al (2005) J Therm Spray Technol 14(2):196CrossRefGoogle Scholar
  35. 35.
    Branagan DJ, Kramer MJ, McCallum RW (1996) J Alloys Compd 244:27CrossRefGoogle Scholar
  36. 36.
    Kobayashi A, Yano S, Kimura H et al (2008) Mater Sci Eng B 148:110CrossRefGoogle Scholar
  37. 37.
    Pharr GM (1998) Mater Sci Eng A 253:151CrossRefGoogle Scholar
  38. 38.
    Inoue A, Wang XM (2000) Acta Mater 48:1383CrossRefGoogle Scholar
  39. 39.
    Kim YH, Higara K, Inoue A et al (1994) Mater Trans JIM 35:293CrossRefGoogle Scholar
  40. 40.
    Gloriant T (2003) J Non-Cryst Solids 316:96CrossRefGoogle Scholar
  41. 41.
    Leonhard A, Xing LQ, Heilmaier M et al (1998) Nanostruct Mater 10:805CrossRefGoogle Scholar
  42. 42.
    Xing LQ, Eckert J, Schultz L (1999) Nanostruct Mater 12:503CrossRefGoogle Scholar
  43. 43.
    Leyland A, Matthews A (2004) Surf Coat Technol 177–178:317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. B. Cheng
    • 1
    • 2
    Email author
  • X. B. Liang
    • 2
  • B. S. Xu
    • 2
  • Y. X. Wu
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and ModificationShanghai Jiaotong UniversityShanghaiChina
  2. 2.National Key Laboratory for RemanufacturingAcademy of Armored Force EngineeringBeijingChina

Personalised recommendations