Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3218–3222 | Cite as

Facile preparation of Ag/ZnO nanoparticles via photoreduction

  • Tarek Alammar
  • Anja-Verena MudringEmail author
Article

Abstract

Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.

Keywords

Ionic Liquid Localize Surface Plasmon Resonance Zinc Oxide Cationic Silver Trifluoromethanesulfonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li X, Fu J, Steinhart M, Kim DH, Knoll W (2007) Bull Korean Chem Soc 28:6Google Scholar
  2. 2.
    Du J, Zhang J, Liu Z, Han B, Jian T, Huang Y (2006) Langmuir 22:1307CrossRefGoogle Scholar
  3. 3.
    Kamat PV (1993) Chem Rev 93:267CrossRefGoogle Scholar
  4. 4.
    Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photocatalysis. Reidel, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  5. 5.
    Chiavello M (1988) Photocatalysis and environment, trends and applications. Reidel, Dordrecht, The NetherlandsGoogle Scholar
  6. 6.
    Xu F, Du GH, Halasa M, Su BL (2006) Chem Phys Lett 426:129CrossRefGoogle Scholar
  7. 7.
    Pal B, Sharon M (2002) Mater Chem Phys 76:82CrossRefGoogle Scholar
  8. 8.
    Gouvea CAK, Wypych F, Moraes SG, Duran N, Peralta-Zamora P (2000) Chemosphere 40:427CrossRefGoogle Scholar
  9. 9.
    Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Appl Catal B 63:305CrossRefGoogle Scholar
  10. 10.
    Stroyuk AL, Shvalagin VV, Kuchmii SY (2005) Photochem Photobiol A 173:185CrossRefGoogle Scholar
  11. 11.
    Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Inorg Chem 46:6980CrossRefGoogle Scholar
  12. 12.
    Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 29:10773CrossRefGoogle Scholar
  13. 13.
    Lu W, Gao S, Wang J (2008) J Phys Chem C 112:16792CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Mu J (2007) J Colloid Interface Sci 309:478CrossRefGoogle Scholar
  15. 15.
    Li ZQ, Xiong YJ, Xie Y (2003) Inorg Chem 42:8105CrossRefGoogle Scholar
  16. 16.
    Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Russo R, Yang PD (2001) Science 292:1897CrossRefGoogle Scholar
  17. 17.
    Liu B, Yu SH, Zhang F, Li L, Zhang Q, Ren L, Jiang K (2004) J Phys Chem B 108:4338CrossRefGoogle Scholar
  18. 18.
    Zhang J, Sun LD, Yin JL, Su HL, Liao CS, Yan CH (2002) Chem Mater 14:4172CrossRefGoogle Scholar
  19. 19.
    Zhang H, Ma XY, Xu J, Niu JJ, Yang DR (2003) Nanotechnology 14:423CrossRefGoogle Scholar
  20. 20.
    Yan HQ, He RR, Pham J, Yang PD (2003) Adv Mater 15:402CrossRefGoogle Scholar
  21. 21.
    Oliveira APA, Hochepied JF, Grillon F, Berger MH (2003) Chem Mater 15:3202CrossRefGoogle Scholar
  22. 22.
    Sridhar K, Bruna M, Mariani E (2000) Mater Res Bull 35:1843CrossRefGoogle Scholar
  23. 23.
    Liu KH, Lin CC, Chen SY (2005) Cryst Growth Des 5:483CrossRefGoogle Scholar
  24. 24.
    Sun L, Wie G, Song Y, Liu Z, Wang Li, Li Z (2006) Mater Lett 60:1291CrossRefGoogle Scholar
  25. 25.
    Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 112:10773CrossRefGoogle Scholar
  26. 26.
    Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) J Appl Phys 84:4084Google Scholar
  27. 27.
    Reetz MT, Helbig WJ (1994) J Am Chem Soc 116:7401CrossRefGoogle Scholar
  28. 28.
    Patole S, Islam M, Aiyer RC, Mahamuni S (2006) J Mater Sci 41:5602. doi: https://doi.org/10.1007/s10853-006-0296-0 CrossRefGoogle Scholar
  29. 29.
    Georgekutty R, Seery MK, Pillai SC (2008) J Phys Chem C 112:13563CrossRefGoogle Scholar
  30. 30.
    Tan T, Li Y, Liu Y, Wang B, Song X, Li E, Wang H, Yan H (2008) Mater Chem Phys 111:305CrossRefGoogle Scholar
  31. 31.
    YiN L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) J Colloid Interface Sci 246:78CrossRefGoogle Scholar
  32. 32.
    Wang WW, Zhu YJ (2004) Inorg Chem Commun 7:1003CrossRefGoogle Scholar
  33. 33.
    Taubert A, Zhonghao L (2007) Dalton Trans 723Google Scholar
  34. 34.
    Antonietti M, Smarsly B, Zhou Y (2008) In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley VCH, WeinheimGoogle Scholar
  35. 35.
    Kawano K, Komatsu M, Yajima Y, Haneda H, Maki H, Yamamoto T (2002) Appl Surf Sci 189:265CrossRefGoogle Scholar
  36. 36.
    Shvalagin VV, Stroyuk AL, Kuchimii SY (2007) J Nanoparticle Res 9:427CrossRefGoogle Scholar
  37. 37.
    Alammar T, Mudring A-V (2009) Mater Lett 63:732CrossRefGoogle Scholar
  38. 38.
    Moudler JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MNGoogle Scholar
  39. 39.
    Kitai A (2008) Luminescent materials and applications. WILEY-VCH, WeinheimCrossRefGoogle Scholar
  40. 40.
    Ozgur U (2005) J Appl Phys 98:041301CrossRefGoogle Scholar
  41. 41.
    Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901CrossRefGoogle Scholar
  42. 42.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) J Chem Phys 116:6755CrossRefGoogle Scholar
  43. 43.
    The Program “MiePlot” is available at https://doi.org/www.philiplaven.com/mieplot.htm. Last accessed 3 March 2009
  44. 44.
    Bohren CF, Huffmann DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, WeinheimGoogle Scholar
  45. 45.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Nano Lett 3:1087CrossRefGoogle Scholar
  46. 46.
    Elghianian R, Storhoff JJ, Mucis RC, Lestinger RL, Mirkin CA (1997) Science 97:1078CrossRefGoogle Scholar
  47. 47.
    Tmaru H, Kuwata H, Miyazahki HT, Miyano K (2002) Appl Phys Lett 80:1826CrossRefGoogle Scholar
  48. 48.
    Rechenberger W, Hohenau A, Leitner A, Kren JR, Lamprecht B, Aussenegg FR (2003) Opt Commun 220:137CrossRefGoogle Scholar
  49. 49.
    Atay T, Song JH, Nurmikko AV (2004) Nano Lett 4:1627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Anorganische Chemie I – Festkörperchemie und MaterialienRuhr-Universität BochumBochumGermany

Personalised recommendations