Facile preparation of Ag/ZnO nanoparticles via photoreduction
- 1.1k Downloads
- 49 Citations
Abstract
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.
Keywords
Ionic Liquid Localize Surface Plasmon Resonance Zinc Oxide Cationic Silver TrifluoromethanesulfonylReferences
- 1.Li X, Fu J, Steinhart M, Kim DH, Knoll W (2007) Bull Korean Chem Soc 28:6Google Scholar
- 2.Du J, Zhang J, Liu Z, Han B, Jian T, Huang Y (2006) Langmuir 22:1307CrossRefGoogle Scholar
- 3.Kamat PV (1993) Chem Rev 93:267CrossRefGoogle Scholar
- 4.Pelizzetti E, Serpone N (1986) Homogeneous and heterogeneous photocatalysis. Reidel, Dordrecht, The NetherlandsCrossRefGoogle Scholar
- 5.Chiavello M (1988) Photocatalysis and environment, trends and applications. Reidel, Dordrecht, The NetherlandsGoogle Scholar
- 6.Xu F, Du GH, Halasa M, Su BL (2006) Chem Phys Lett 426:129CrossRefGoogle Scholar
- 7.Pal B, Sharon M (2002) Mater Chem Phys 76:82CrossRefGoogle Scholar
- 8.Gouvea CAK, Wypych F, Moraes SG, Duran N, Peralta-Zamora P (2000) Chemosphere 40:427CrossRefGoogle Scholar
- 9.Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Appl Catal B 63:305CrossRefGoogle Scholar
- 10.Stroyuk AL, Shvalagin VV, Kuchmii SY (2005) Photochem Photobiol A 173:185CrossRefGoogle Scholar
- 11.Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Inorg Chem 46:6980CrossRefGoogle Scholar
- 12.Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 29:10773CrossRefGoogle Scholar
- 13.Lu W, Gao S, Wang J (2008) J Phys Chem C 112:16792CrossRefGoogle Scholar
- 14.Zhang Y, Mu J (2007) J Colloid Interface Sci 309:478CrossRefGoogle Scholar
- 15.Li ZQ, Xiong YJ, Xie Y (2003) Inorg Chem 42:8105CrossRefGoogle Scholar
- 16.Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Russo R, Yang PD (2001) Science 292:1897CrossRefGoogle Scholar
- 17.Liu B, Yu SH, Zhang F, Li L, Zhang Q, Ren L, Jiang K (2004) J Phys Chem B 108:4338CrossRefGoogle Scholar
- 18.Zhang J, Sun LD, Yin JL, Su HL, Liao CS, Yan CH (2002) Chem Mater 14:4172CrossRefGoogle Scholar
- 19.Zhang H, Ma XY, Xu J, Niu JJ, Yang DR (2003) Nanotechnology 14:423CrossRefGoogle Scholar
- 20.Yan HQ, He RR, Pham J, Yang PD (2003) Adv Mater 15:402CrossRefGoogle Scholar
- 21.Oliveira APA, Hochepied JF, Grillon F, Berger MH (2003) Chem Mater 15:3202CrossRefGoogle Scholar
- 22.Sridhar K, Bruna M, Mariani E (2000) Mater Res Bull 35:1843CrossRefGoogle Scholar
- 23.Liu KH, Lin CC, Chen SY (2005) Cryst Growth Des 5:483CrossRefGoogle Scholar
- 24.Sun L, Wie G, Song Y, Liu Z, Wang Li, Li Z (2006) Mater Lett 60:1291CrossRefGoogle Scholar
- 25.Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) J Phys Chem C 112:10773CrossRefGoogle Scholar
- 26.Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) J Appl Phys 84:4084Google Scholar
- 27.Reetz MT, Helbig WJ (1994) J Am Chem Soc 116:7401CrossRefGoogle Scholar
- 28.Patole S, Islam M, Aiyer RC, Mahamuni S (2006) J Mater Sci 41:5602. doi: https://doi.org/10.1007/s10853-006-0296-0 CrossRefGoogle Scholar
- 29.Georgekutty R, Seery MK, Pillai SC (2008) J Phys Chem C 112:13563CrossRefGoogle Scholar
- 30.Tan T, Li Y, Liu Y, Wang B, Song X, Li E, Wang H, Yan H (2008) Mater Chem Phys 111:305CrossRefGoogle Scholar
- 31.YiN L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) J Colloid Interface Sci 246:78CrossRefGoogle Scholar
- 32.Wang WW, Zhu YJ (2004) Inorg Chem Commun 7:1003CrossRefGoogle Scholar
- 33.Taubert A, Zhonghao L (2007) Dalton Trans 723Google Scholar
- 34.Antonietti M, Smarsly B, Zhou Y (2008) In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley VCH, WeinheimGoogle Scholar
- 35.Kawano K, Komatsu M, Yajima Y, Haneda H, Maki H, Yamamoto T (2002) Appl Surf Sci 189:265CrossRefGoogle Scholar
- 36.Shvalagin VV, Stroyuk AL, Kuchimii SY (2007) J Nanoparticle Res 9:427CrossRefGoogle Scholar
- 37.Alammar T, Mudring A-V (2009) Mater Lett 63:732CrossRefGoogle Scholar
- 38.Moudler JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MNGoogle Scholar
- 39.Kitai A (2008) Luminescent materials and applications. WILEY-VCH, WeinheimCrossRefGoogle Scholar
- 40.Ozgur U (2005) J Appl Phys 98:041301CrossRefGoogle Scholar
- 41.Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901CrossRefGoogle Scholar
- 42.Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) J Chem Phys 116:6755CrossRefGoogle Scholar
- 43.The Program “MiePlot” is available at https://doi.org/www.philiplaven.com/mieplot.htm. Last accessed 3 March 2009
- 44.Bohren CF, Huffmann DR (1983) Absorption and scattering of light by small particles. Wiley-VCH, WeinheimGoogle Scholar
- 45.Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Nano Lett 3:1087CrossRefGoogle Scholar
- 46.Elghianian R, Storhoff JJ, Mucis RC, Lestinger RL, Mirkin CA (1997) Science 97:1078CrossRefGoogle Scholar
- 47.Tmaru H, Kuwata H, Miyazahki HT, Miyano K (2002) Appl Phys Lett 80:1826CrossRefGoogle Scholar
- 48.Rechenberger W, Hohenau A, Leitner A, Kren JR, Lamprecht B, Aussenegg FR (2003) Opt Commun 220:137CrossRefGoogle Scholar
- 49.Atay T, Song JH, Nurmikko AV (2004) Nano Lett 4:1627CrossRefGoogle Scholar