Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3198–3210 | Cite as

Effect of thermal residual stresses on the strength for both alumina/Ni/alumina and alumina/Ni/nickel alloy bimaterials

  • M. L. HattaliEmail author
  • S. Valette
  • F. Ropital
  • N. Mesrati
  • D. Tréheux
Article

Abstract

This paper describes some technical limitations encountered in joining ceramics–ceramics or ceramics–metals, and how, to some extent, they have been practically overcome. The effect of the residual stresses on the strength of joints fabricated between alumina–alumina or alumina and the nickel base alloy HAYNES® 214™ using a solid-state bonding technique with Ni interlayer was studied. Finite element analyses (FEA) for the elastic–plastic and elastic–plastic–creep behavior have also been used to better design the joints and to predict their performance. It was found that the residual stresses caused by the thermal expansion mismatch between alumina (Al2O3) and the Ni-based superalloy (HAYNES® 214™) have severely deteriorated the joints compared to Al2O3–Al2O3 joint fabricated with the same solid-state bonding parameters. The high residual stresses zones obtained through the FEA simulation fitted well with the fractographic observations of the Al2O3/Ni/HAYNES® 214™ joints. Also, in order to use the joint material as a structural material, the study about the effect of geometrical parameters has been performed. Optimal geometries have been determined.

Keywords

Residual Stress Finite Element Analysis Creep Model CuAl2O4 NiAl2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Foley AG, Andrews DJ (1994) Tech Rev 13:64Google Scholar
  2. 2.
    Lemus-Ruiz J, Ceja-Cardenas L, Verduzco JA, Osvaldo F (2008) J Mater Sci 43(18):6296. doi: https://doi.org/10.1007/s10853-008-2894-5 CrossRefGoogle Scholar
  3. 3.
    Lourdin P, Juvé D, Tréheux D (1996) J Eur Ceram Soc 16(7):745CrossRefGoogle Scholar
  4. 4.
    Serier B, Tréheux D (1993) Acta Metall Mater 41(2):369CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Feng D, He ZY, Chen XC (2006) J Iron Steel Res Int 13(2):1CrossRefGoogle Scholar
  6. 6.
    Das S, Tiwar AN, Kulkarni AR (2004) J Mater Sci 39:3345. doi: https://doi.org/10.1023/B:JMSC.0000026935.18466.4b CrossRefGoogle Scholar
  7. 7.
    Locatelli MR, Dalgleish BJ, Nakashima K, Tomsia AP, Glaeser AM (1997) Ceram Inter 23:313CrossRefGoogle Scholar
  8. 8.
    Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 42(23):9524. doi: https://doi.org/10.1007/s10853-007-2093-9 CrossRefGoogle Scholar
  9. 9.
    Kar A, Mandal S, Ghosh RN, Ghosh TK, Ray AK (2007) J Mater Sci 42(14):5556. doi: https://doi.org/10.1007/s10853-006-1092-6 CrossRefGoogle Scholar
  10. 10.
    Zhang JX, Chandel YZ, Seow HP (2002) J Mater Proc Tech 122:220CrossRefGoogle Scholar
  11. 11.
    Schwartz MM (1990) Ceramic joining. ASM International, Metals Park, OHGoogle Scholar
  12. 12.
    Zhang Y, Feng D, He ZY, Chen XC (2006) J Iron Steel Res 13(2):1CrossRefGoogle Scholar
  13. 13.
    Tréheux D, Lourdin P, Mbongo B, Juve D (1994) Scripta Metall Mater 31(8):105511CrossRefGoogle Scholar
  14. 14.
    Wan C, Dupeux M (1993) J Mater Sci 28:5079. doi: https://doi.org/10.1007/BF00361183 CrossRefGoogle Scholar
  15. 15.
    Zhang W, Smith JR, Evans AG (2002) Acta Mater 50:3803CrossRefGoogle Scholar
  16. 16.
    Florjancic M, Mader W, Rühle M, Turwitt M (1985) J Phys 46C4:129Google Scholar
  17. 17.
    Morozumi S, Kikuchi S, Nishio T (1981) J Mater Sci 16:2137. doi: https://doi.org/10.1007/BF0054374 CrossRefGoogle Scholar
  18. 18.
    Lu YC, Sass SL, Bai Q, Kohlstedt DL, Gerberich WW (1995) Acta Metall Mater 43:31Google Scholar
  19. 19.
    Heikinheimo LSK, de With G (1996) International Institute of Welding, Report IIW Doc IX, 1827 pGoogle Scholar
  20. 20.
    Trumble KP, Ruhle M (1991) Acta Metall Mater 39:1915CrossRefGoogle Scholar
  21. 21.
    Tang S, Zehnder AT (2002) Eng Frac Mech 69:701CrossRefGoogle Scholar
  22. 22.
    Ohuchi FS, French RH, Kasowski RV (1987) J Appl Phys 62(6):31CrossRefGoogle Scholar
  23. 23.
    Beraud C, Esnouf C (1990) Microsc Microanal Microstruct 1:69CrossRefGoogle Scholar
  24. 24.
    Hattali ML, Valette S, Ropital F, Stremsdoerfer G, Mesrati N, Tréheux D (2009) J Eur Ceram Soc 29:813CrossRefGoogle Scholar
  25. 25.
    Calow CA, Bayer PB, Porter IT (1971) J Mater Sci 6:150. doi: https://doi.org/10.1007/BF00550346 CrossRefGoogle Scholar
  26. 26.
    Sutton WH, Feingold (1966) The role of grain boundaries and surfaces in ceramics. Plenum Press, New YorkGoogle Scholar
  27. 27.
    Bailey FP, Borbidge WE (1981) Mater Sci Res 14:525Google Scholar
  28. 28.
    Calow CA, Porter IT (1971) J Mater Sci 6:156. doi: https://doi.org/10.1007/BF00550347 CrossRefGoogle Scholar
  29. 29.
    Vardiman RG (1972) Mater Res Bull 7:699CrossRefGoogle Scholar
  30. 30.
    Foley AG, Winters CG (1989) British Ceram Proceed 81(9):2342Google Scholar
  31. 31.
    Baram M, Kaplan WD (2006) J Mater Sci 41(23):7775. doi: https://doi.org/10.1007/s10853-006-0897-7 CrossRefGoogle Scholar
  32. 32.
    Kara-Slimane A, Mbongo B, Tréheux DJ (1999) Adhes Sci Technol 13:35CrossRefGoogle Scholar
  33. 33.
    ABAQUS Software (2006) User’s manual, version 6.6. Karlsson and Sorensen Inc, HibbittGoogle Scholar
  34. 34.
    Luton MJ, Sellars CM (1969) Acta Met 17:1033CrossRefGoogle Scholar
  35. 35.
    Frost HJ, Ashby MF (1982) Deformation mechanism maps, the plasticity and creep of metals and ceramics, 1 edn. Pergamon, OxfordGoogle Scholar
  36. 36.
    Drillet P (1991) Thèse de doctorat. University of Rennes, FranceGoogle Scholar
  37. 37.
    Levi G, Kaplan WD (2006) J Mater Sci 41(3):817. doi: https://doi.org/10.1007/s10853-006-6565-0 CrossRefGoogle Scholar
  38. 38.
    Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Scripta Metall Mater 31(8):1109CrossRefGoogle Scholar
  39. 39.
    Hattali ML (2009) Caractérisations et modélisations thermomécaniques des assemblages métal/céramique élaborés par thermocompression. Thèse de doctorat, Ecole Centrale de Lyon, FranceGoogle Scholar
  40. 40.
    Touloukian YS (1967) Thermophysical properties of high temperature solid materials. MacMillan, New YorkGoogle Scholar
  41. 41.
    Haynes International, Inc (2008) https://doi.org/www.haynesintl.com. Accessed 3 June 2008
  42. 42.
    Lourdin P (1992) Les liaisons Ni-Al2O3 à l’état solide. Etat des contraintes thermique, comportement mécanique. Thèse de doctorat, Ecole Centrale de Lyon, FranceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. L. Hattali
    • 1
    Email author
  • S. Valette
    • 1
  • F. Ropital
    • 3
  • N. Mesrati
    • 2
  • D. Tréheux
    • 1
  1. 1.Laboratoire de Tribologie et Dynamique des SystèmesUMR CNRS ECL ENISE ENSMSE 5513, École Centrale de LyonLyonFrance
  2. 2.Laboratoire de Sciences et Génie des MatériauxÉcole Nationale Polytechnique d’AlgerAlgerAlgeria
  3. 3.Institut Français du PétroleLyonFrance

Personalised recommendations