Journal of Materials Science

, Volume 44, Issue 12, pp 3192–3197 | Cite as

The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material

  • David E. Motaung
  • Gerald F. MalgasEmail author
  • Christopher J. Arendse
  • Sipho E. Mavundla
  • Clive J. Oliphant
  • Dirk Knoesen


In this report, the influence of thermal annealing of thin P3HT films and P3HT:C60 composites were studied regarding their morphology and structural properties. Atomic force microscope measurements on P3HT films and P3HT:C60 composite disclose some variation in morphology during annealing due to the crystallization of C60. The as-prepared P3HT:C60 films have a higher surface roughness and larger cluster size compared to the as-prepared P3HT films. The thermal annealing effects on the optical microscopy indicate that the polymer shows improved capability to self-organize. Their structural properties were studied by X-ray diffraction analysis. It was found that the crystallinity of the investigated films is drastically increased upon annealing and a decrease in the grain sizes is observed.


Fullerene High Surface Roughness P3HT Film P3HT Chain Obvious Phase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the financial support of the Department of Science and Technology of South Africa and the Council for Scientific Industrial Research (CSIR), South Africa (Project No. HGERA7S). The authors are especially thankful to Jayita Bandyopadhyay (National Centre for Nano-Structured Materials, CSIR) for her valued assistance with the optical microscopy analysis.


  1. 1.
    Sun S-S, Sariciftci NS (2005) Organic photovoltaics: mechanisms, materials, and devices. CRC Press, Boca Raton, FLGoogle Scholar
  2. 2.
    Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (2003) Organic photovoltaics: concepts and realization. Springer, Berlin, GermanyCrossRefGoogle Scholar
  3. 3.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617CrossRefGoogle Scholar
  4. 4.
    Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45CrossRefGoogle Scholar
  5. 5.
    Halls JJM, Arias AC, MacKenzie JD, Wu WS, Inbasekaran M, Woo EP, Friend RH (2000) Adv Mater 12:498CrossRefGoogle Scholar
  6. 6.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636CrossRefGoogle Scholar
  7. 7.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85CrossRefGoogle Scholar
  8. 8.
    Yang XN, Van Duren JKJ, Rispens MT, Hummelen JC, Janssen RAJ, Michels MAJ, Loos J (2004) Adv Mater 16:802CrossRefGoogle Scholar
  9. 9.
    Camaioni N, Ridolfi G, Casalbore-Miceli G, Possamai G, Maggini M (2002) Adv Mater 14:1735CrossRefGoogle Scholar
  10. 10.
    Aasmundtveit KE, Samuelsen EJ, Guldstein M, Steinsland C, Flornes O, Fagermo C, Seeberg TM, Pettersson LAA, Ingana¨s O, Feidenhansl R, Ferrer S (2000) Macromolecules 33:3120CrossRefGoogle Scholar
  11. 11.
    Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nano Lett 5:579CrossRefGoogle Scholar
  12. 12.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222CrossRefGoogle Scholar
  13. 13.
    Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) J Phys Chem 97:3379CrossRefGoogle Scholar
  14. 14.
    Li G, Shrotriya V, Yao Y, Yang Y (2005) J Appl Phys 98:043704CrossRefGoogle Scholar
  15. 15.
    Kim Y, Choulis SA, Nelson JJ, Bradley DDC (2005) J Mater Sci 40:1371. doi: CrossRefGoogle Scholar
  16. 16.
    Yu H-Z, Peng J-B (2008) Chin Phys Lett 25:1411CrossRefGoogle Scholar
  17. 17.
    Drees M, Hoppe H, Winder C, Neugebauer H, Sariciftci NS, Schwinger W, Schaffler F, Topf C, Scharber MC, Zhud Z (2005) J Mater Chem 15:5158CrossRefGoogle Scholar
  18. 18.
    Nguyen LH, Hoppe H, Erb T, Günes S, Gobsch G, Sariciftci NS (2007) Adv Funct Mater 17:1071CrossRefGoogle Scholar
  19. 19.
    Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nature Mater 7:158CrossRefGoogle Scholar
  20. 20.
    Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) Adv Mater 18:572CrossRefGoogle Scholar
  21. 21.
    Erb T, Raleva S, Zhokhavets U, Gobsch G, Stuhn B, Spode M, Ambacher O (2004) Thin Solid Films 450:97CrossRefGoogle Scholar
  22. 22.
    Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Thin Solid Films 511:483CrossRefGoogle Scholar
  23. 23.
    Warren BE (1990) X-ray diffraction. Dover, New York, p 251Google Scholar
  24. 24.
    Cullity D (1956) Elements of X-ray diffraction. Addison-Wesley, Reading, MAGoogle Scholar
  25. 25.
    Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet JMJ (2003) Adv Mater 15:1519CrossRefGoogle Scholar
  26. 26.
    Chiu M-Y, Jeng U-S, Su C-H, Liang KS, Wei KH (2008) Adv Mater 20:2573CrossRefGoogle Scholar
  27. 27.
    Huang Y-C et al (2008) Sol Energy Mater Sol Cells. doi: CrossRefGoogle Scholar
  28. 28.
    Kim Y, Cook S, Tuladhar SM, Choulis SA (2006) Nature Mater 5:197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David E. Motaung
    • 1
    • 2
  • Gerald F. Malgas
    • 1
    Email author
  • Christopher J. Arendse
    • 2
  • Sipho E. Mavundla
    • 1
    • 3
  • Clive J. Oliphant
    • 1
  • Dirk Knoesen
    • 2
  1. 1.National Centre for Nano-structured Materials, Council for Scientific Industrial ResearchPretoriaSouth Africa
  2. 2.Department of PhysicsUniversity of the Western CapeBellvilleSouth Africa
  3. 3.Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations