Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3082–3087 | Cite as

One-step template-free synthesis of ZnWO4 hollow clusters

  • Wei Zhao
  • Xinyu Song
  • Guozhu Chen
  • Sixiu SunEmail author
Article

Abstract

ZnWO4 hollow clusters made up of nanorods were successfully prepared through a tripotassium citrate assisted hydrothermal process at 180 °C. The hollow clusters’ diameter was about 400 nm, and these clusters were made up of nanorods with a diameter of about 10 nm and a length of about 50 nm. X-ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the synthesized products. Based on experiments, the growth of these hollow clusters followed an aggregation-Ostwald ripening process. The photocatalytic activities for aqueous Rhodamine B of samples were investigated, and it was seen that ZnWO4 hollow clusters exhibited a strong photocatalytic activity.

Keywords

Photocatalytic Activity Hydrothermal Process Hollow Structure Hollow Interior TiO2 Hollow Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the financial aid from National Nature Science Fund of China and the 973 project of China (grant no. 2005CB623601).

References

  1. 1.
    Meier W (2000) Chem Soc Rev 29:295CrossRefGoogle Scholar
  2. 2.
    Caruso F (2001) Adv Mater 13:11CrossRefGoogle Scholar
  3. 3.
    Yu A, Wang Y, Barlow E et al (2005) Adv Mater 17:1737CrossRefGoogle Scholar
  4. 4.
    Dhas NA, Suslick KS (2005) J Am Chem Soc 127:2368CrossRefGoogle Scholar
  5. 5.
    Chen M, Wu LM, Zhou SX et al (2006) Adv Mater 18:801CrossRefGoogle Scholar
  6. 6.
    Yang Z, Niu Z, Lu Y et al (2003) Angew Chem Int Ed 42:1943CrossRefGoogle Scholar
  7. 7.
    Sun YQ, Kooyman PJ, Grossmann JG et al (2003) Adv Mater 15:1097CrossRefGoogle Scholar
  8. 8.
    Yang HG, Zeng HC (2004) Angew Chem Int Ed 43:5930CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Li G, Wu Y et al (2005) J Phys Chem B 109:5478CrossRefGoogle Scholar
  10. 10.
    Jia BP, Gao L (2007) J Cryst Growth 303:616CrossRefGoogle Scholar
  11. 11.
    Qi T, Takagi K, Fukazawa T (1980) Appl Phys Lett 36:278CrossRefGoogle Scholar
  12. 12.
    Petermann K, Huber G (1984) J Lumin 31:71CrossRefGoogle Scholar
  13. 13.
    Caprez A, Meyer P, Mikhail P et al (1997) Mater Res Bull 32:1045CrossRefGoogle Scholar
  14. 14.
    Zhao X, Zhu YF (2006) Environ Sci Technol 306:58Google Scholar
  15. 15.
    Yu SH, Liu B, Mo MS et al (2003) Adv Funct Mater 13:639CrossRefGoogle Scholar
  16. 16.
    Liu B, Yu SH, Li LJ et al (2004) J Phys Chem B 108:2788CrossRefGoogle Scholar
  17. 17.
    Lin J, Lin J, Zhu YF (2007) Inorg Chem 46:8372CrossRefGoogle Scholar
  18. 18.
    Huang JH, Gao L (2006) J Am Ceram Soc 89:3877CrossRefGoogle Scholar
  19. 19.
    Li CH, Yang J, Yang PP et al (2008) Chem Mater 20:4317CrossRefGoogle Scholar
  20. 20.
    Li CH, Quan ZW, Yang J et al (2007) Inorg Chem 46:6329CrossRefGoogle Scholar
  21. 21.
    Wang HL, Ma XD, Qian XF et al (2004) J Solid State Chem 177:4588CrossRefGoogle Scholar
  22. 22.
    Yang HG, Zeng HC (2004) J Phys Chem B 108:3492CrossRefGoogle Scholar
  23. 23.
    Liu B, Zeng HC (2005) Small 1:566CrossRefGoogle Scholar
  24. 24.
    Jing L, Zeng HC (2007) J Am Chem Soc 129:15839CrossRefGoogle Scholar
  25. 25.
    Xiong Y, Li Z, Li X et al (2004) Inorg Chem 43:6540CrossRefGoogle Scholar
  26. 26.
    Li LL, Chu Y, Liu Y et al (2007) J Phys Chem C 111:2123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China

Personalised recommendations