Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3061–3071 | Cite as

Interactions of gamma rays with tungsten-doped lead phosphate glasses

  • Fatma Hatem ElBatalEmail author
  • Samir Yousef Marzouk
Article

Abstract

Undoped lead phosphate glass of the composition PbO 50 mol%, P2O5 50 mol% together with samples of the same ratio doped with various WO3 contents were prepared. UV–Visible spectroscopic studies were measured out in the range 200–1100 nm before and after successive gamma irradiation. Infrared and Raman spectroscopic measurements were carried out for the undoped and WO3-doped samples. All the prepared samples are observed to absorb strongly in the UV region due to the combined contributions of absorption from trace iron impurities and sharing of lead Pb2+ ions. The bluish WO3-doped lead phosphate samples reveal visible absorption bands which are attributed to the existence of pentavalent W5+ ions. ESR measurements support this assumption. Infrared and Raman spectra indicate the presence of metaphosphate chains as the structural main building units and the possible presence of appreciable pentavalent (W5+O3) of W5+ units together with hexavalent WO4 units. Gamma irradiation reveal the shielding behaviour of the studied tungsten-doped lead phosphate glasses due to the combined presence of heavy Pb2+ ions and tungsten ions.

Keywords

Electron Spin Resonance Phosphate Glass Infrared Absorption Spectrum Visible Absorption Spectrum Ammonium Dihydrogen Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McMillan PW (1979) Glass-ceramics, 2nd edn. Academic Press, London, p 82Google Scholar
  2. 2.
    Bamford CR (1977) Colour generation and control in glass, glass science and technology, vol 2. Elsevier Scientific Publishing Company, Amsterdam, p 118Google Scholar
  3. 3.
    Cotton FA, Wilkinson G, Murillo CA, Buchmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Selvaraj U, Rao KJ (1985) J Non-Cryst Solids 75:315CrossRefGoogle Scholar
  5. 5.
    Selvaraj U, Kershava Sunder HG, Rao KJ (1989) J Chem Soc Faraday Trans 85:251CrossRefGoogle Scholar
  6. 6.
    Muthupari S, Kulkarni GU, Rao KJ (1994) Bull Mater Sci 17:1029CrossRefGoogle Scholar
  7. 7.
    Muthupari S, Rao KJ (1996) J Phys Chem Solids 57:553CrossRefGoogle Scholar
  8. 8.
    Nadiri A, Yacoubi A, Bih L, Haddad M, Levaseur A (1990) Adv Mater Res 1–2:413Google Scholar
  9. 9.
    Boudlich D, Bih L, ElHassan Archidi M, Haddad M, Yacoubi A, Nadiri A, Eloudi B (2002) J Am Ceram Soc 85:623CrossRefGoogle Scholar
  10. 10.
    Poirier G, Poulain M, Messddeq Y, Ribeiro SJL (2005) J Non-Cryst Solids 351:293CrossRefGoogle Scholar
  11. 11.
    ElKhshen AA, ElBatal FH, Marzouk SY (2008) Indian J Pure Appl Phys 46:225Google Scholar
  12. 12.
    Haddad M, Nadiri A, Biyadi A, Archidi ME, Folgado JV, Beltran-Porter D (1992) J Alloys Compd 188:161CrossRefGoogle Scholar
  13. 13.
    ElBatal FH, Marzouk SY, EzzElDin FM (2009) Physica (B) (under publication)Google Scholar
  14. 14.
    Duffy JA (1999) Phys Chem Glasses 38:289Google Scholar
  15. 15.
    Natura U, Ehrt D, Naumann K (2001) Glastech Ber Glass Sci Technol 74:23Google Scholar
  16. 16.
    Sigel GH Jr, Ginther RJ (1968) Glass Technol 9:66Google Scholar
  17. 17.
    Ehrt D, Ebeling P, Natura U (2000) J Non-Cryst Solids 263& 264:240CrossRefGoogle Scholar
  18. 18.
    Cook L, Mader KH (1982) J Am Ceram Soc 65:109CrossRefGoogle Scholar
  19. 19.
    Moncke D, Ehrt D (2004) Opt Mater 25:425CrossRefGoogle Scholar
  20. 20.
    ElBatal FH, Abo-Naf SM, EzzElDin FM (2005) Indian J Pure Appl Phys 43:574Google Scholar
  21. 21.
    Marzouk SY, ElBatal FH (2006) Nucl Instrum Methods Phys Res (B) 248:90CrossRefGoogle Scholar
  22. 22.
    ElBatal FH, ElKheshen AA, Azooz MA, AboNaf SM (2008) Opt Mater 30:881CrossRefGoogle Scholar
  23. 23.
    Little Flower G, Sahaya Baskaran G, Krishna Mohan N, Verraiah N (2006) Mater Chem Phys 100:211CrossRefGoogle Scholar
  24. 24.
    Dayanand C, Bhikshamaiah G, Tyagaraju VJ, Salagram M, Krishna Murthy ASR (1996) J Mater Sci 31:1945. doi: https://doi.org/10.1007/BF00356615 CrossRefGoogle Scholar
  25. 25.
    Shaltout I, Tang Y, Braunstein R, Abou ElAzm MA (1995) J Phys Chem Solids 56:141CrossRefGoogle Scholar
  26. 26.
    Shaltout I, Tang Y, Braunstein R, Shaisha EE (1996) J Phys Chem Solids 57:1223CrossRefGoogle Scholar
  27. 27.
    Sekiya T, Mochida N, Ogawa S (1994) J Non-Cryst Solids 176:105CrossRefGoogle Scholar
  28. 28.
    Charton P, Cengewbre I, Armand P (2002) J Solid State Chem 16:175CrossRefGoogle Scholar
  29. 29.
    Dimitrov V, Arnaudov M, Dimitriev YB (1984) Monatschfte Chem 115:987CrossRefGoogle Scholar
  30. 30.
    Subbalakshmi P, Verraiah N (2003) J Phys Chem Solids 64:1027CrossRefGoogle Scholar
  31. 31.
    Abdellouhab RM, Braunstein R, Barner K (1989) J Non-Cryst Solids 108:109CrossRefGoogle Scholar
  32. 32.
    Von Dirke M, Muller S, Barver K, Rager H (1990) J Non-Cryst Solids 124:265CrossRefGoogle Scholar
  33. 33.
    Fruchardt JM, Herve G, Launary J, Massart R (1976) J Inorg Nucl Chem 38:1627CrossRefGoogle Scholar
  34. 34.
    Koffuberg FP, Benko FA (1980) J Non-Cryst Solids 40:7CrossRefGoogle Scholar
  35. 35.
    Salje E, Hoppmann G (1981) Philos Mag B 43:105CrossRefGoogle Scholar
  36. 36.
    Kleperis JJ, Cikmach PD, Lusis AR (1984) Phys State Solidi (A) 83:291CrossRefGoogle Scholar
  37. 37.
    Bishay A (1970) J Non-Cryst Solids 3:54CrossRefGoogle Scholar
  38. 38.
    Friebele EJ, Griscom DL (1979) In: Doremus RH, Tomozawa M (eds) Treatise on materials science and technology, 17th edn. Academic Press, New York, p 257Google Scholar
  39. 39.
    Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, OH, p 205Google Scholar
  40. 40.
    BeekenKamp P (1965), Thesis, Technical University, EindhovenGoogle Scholar
  41. 41.
    Arichidi ME, Haddad M, Naddiri A, Benyaich F, Berger R (1996) Nucl Instr Meth Phys Res B 116:145CrossRefGoogle Scholar
  42. 42.
    Ewing RC, Weber WJ, Chinard FW (1995) Prog Nucl Energy 29(1):61Google Scholar
  43. 43.
    Singh H, Singh K, Germand L, Sahota HS, Nathuram R (2002) Nucl-Inst Meth Phys (B) 207:257CrossRefGoogle Scholar
  44. 44.
    ElBatal FH, Azooz MA, Ezz ElDin FM (2002) Phys Chem Glasses 43:260Google Scholar
  45. 45.
    Singh N, Singh KJ, Singh K, Singh H (2004) Nucl Inst Meth Phys Res (B) 225:305CrossRefGoogle Scholar
  46. 46.
    ElBatal FH (2007) Nucl Instr Meth Phys B 254:243CrossRefGoogle Scholar
  47. 47.
    Moncke D, Ehrt D (2006) J Non-Cryst Solids 352:2631CrossRefGoogle Scholar
  48. 48.
    Tarte P (1982) Spectrochim Acta 18:467CrossRefGoogle Scholar
  49. 49.
    Condrate R (1972) Introduction to glass science. New York, Plenum Press, p 101CrossRefGoogle Scholar
  50. 50.
    Nelson BN, Exhahosr GJ (1979) J Chem Phys 71:2379CrossRefGoogle Scholar
  51. 51.
    Efimov AM (1997) J Non-Cryst Solids 209:209CrossRefGoogle Scholar
  52. 52.
    Moustafa YM, El Egili K (1998) J Non-Cryst Solids 240:144CrossRefGoogle Scholar
  53. 53.
    Znacik P, Jamnicky M (1992) J Non-Cryst Solids 146:74CrossRefGoogle Scholar
  54. 54.
    Abdel-Kader A, Higazy AA, ElKholy MM (1991) J Mater Electron 5:15Google Scholar
  55. 55.
    Exarhos GJ (1986) In: Warlrafen GE, Revez AG (eds) Strucure and bonding in non-cryst solids. Plenum Press, New York, p 203CrossRefGoogle Scholar
  56. 56.
    Chowdari BVR, Tan KI, Chia WT, Gopala Krishnan R (1990) J Non-Cryst Solids 119:95CrossRefGoogle Scholar
  57. 57.
    Montagne L, Palrit G, Mairesse G (1996) Phys Chem Glasses 37:206Google Scholar
  58. 58.
    Husung RD, Doremus RD (1990) J Mater Res 25:2209CrossRefGoogle Scholar
  59. 59.
    Chahine A, El-Tabirou M, El-Banaisci M, Haddad M, Pascal JL (2004) Mater Chem Phys 84:41CrossRefGoogle Scholar
  60. 60.
    ElBatal FH (2008) J Mater Sci 43:1070. doi: https://doi.org/10.1007/s10853-007-2254-x CrossRefGoogle Scholar
  61. 61.
    Maczka M, Waskomska A, Hmuza J (2006) J Solid State Chem 179:103CrossRefGoogle Scholar
  62. 62.
    Maczka M, Maclik B, Hamuza J, Waskomska A (2006) J Non-Cryst Solids 352:5586CrossRefGoogle Scholar
  63. 63.
    Wong J, Angell CA (1976) Glass structure by vibrational spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  64. 64.
    Kao J, Bae B, Na H (1997) J Non-Cryst Solids 212:173CrossRefGoogle Scholar
  65. 65.
    Tallant DR, Nelson C, Wilder JA (1986) Phys Chem Glasses 27:71Google Scholar
  66. 66.
    Morgan SH, Magruder RH, Silberman E (1987) J Am Ceram Soc 70:70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research CenterDokki, CairoEgypt
  2. 2.Electron Microscope and Thin Film DepartmentNational Research CenterDokki, CairoEgypt

Personalised recommendations