Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2999–3001 | Cite as

Comment on “preparation and electrorheology of new mesoporous polypyrrole/MCM-41 suspensions”

  • Ying Dan Liu
  • Hyoung Jin ChoiEmail author
Letter

Electrorheological (ER) fluid, typically composed of polarizable particles and an insulating liquid, is a kind of smart materials which can be characterized by a reversible change from a liquid-like to a solid-like state without or with an electric field, [1, 2, 3, 4, 5, 6, 7, 8, 9] along with its magnetically analogous magnetorheological suspensions under an external magnetic field [10, 11, 12]. Rheological properties of this ER material such as shear stress and shear viscosity are also altered and tuned according to the electric field. Therefore, many investigators put a focus on this material and dedicate to their potential applications [13, 14].

Recently, Cheng et al. [15] reported a new type of anhydrous ER fluid prepared by dispersing nanocomposite particles (PPy/MCM-41) of conducting polypyrrole (PPy) confined in mesoporous silica (MCM-41) in silicone oil. This ER material was synthesized via a polymerization of pyrrole, which was introduced to the MCM-41 channels prior to the...

Keywords

Shear Rate Flow Curve Electric Field Strength Bingham Fluid Applied Electric Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Korea.

References

  1. 1.
    Fang FF, Choi HJ, Joo J (2008) J Nanosci Nanotech 8:1559CrossRefGoogle Scholar
  2. 2.
    Choi HJ, Jhon MS (2009) Soft Matter. doi: https://doi.org/10.1039/b818368f CrossRefGoogle Scholar
  3. 3.
    Kim DH, Kim YD (2007) J Ind Eng Chem 13:879Google Scholar
  4. 4.
    Hong CH, Choi HJ, Kim JH (2008) J Mater Sci 43:5702. doi: https://doi.org/10.1007/s10853-008-2915-4 CrossRefGoogle Scholar
  5. 5.
    Oz K, Yavuz M, Yilmaz H, Unal HI, Sari B (2008) J Mater Sci 43:1451. doi: https://doi.org/10.1007/s10853-007-2319-x CrossRefGoogle Scholar
  6. 6.
    Li GF, Wang ZQ, Wang NH (2007) J Mater Sci 42:8242. doi: https://doi.org/10.1007/s10853-007-1733-4 CrossRefGoogle Scholar
  7. 7.
    Yoon DJ, Kim YD (2007) J Mater Sci 42:5534. doi: https://doi.org/10.1007/s10853-006-1026-3 CrossRefGoogle Scholar
  8. 8.
    Shang YL, Jia YL, Liao FH, Li JR, Li MX, Wang J, Zhang SH (2007) J Mater Sci 42:2586. doi: https://doi.org/10.1007/s10853-006-1336-5 CrossRefGoogle Scholar
  9. 9.
    Yavuz M, Cabuk M (2007) J Mater Sci 42:2132. doi: https://doi.org/10.1007/s10853-006-1296-9 CrossRefGoogle Scholar
  10. 10.
    Bica I (2007) J Ind Eng Chem 13:299Google Scholar
  11. 11.
    Bica I, Choi HJ (2008) Int J Modern Phys B 22:5041CrossRefGoogle Scholar
  12. 12.
    Fang FF, Choi HJ (2008) J Appl Phys 103:07A301CrossRefGoogle Scholar
  13. 13.
    Liu L, Cao W, Wu J, Wen W, Chang DC, Sheng P (2008) Biomicrofluids 2:034103CrossRefGoogle Scholar
  14. 14.
    Belza T, Pavlinek V, Saha P, Quadrat O (2008) Colloid Surf A 316:89CrossRefGoogle Scholar
  15. 15.
    Cheng QL, He Y, Pavlinek V, Lengalova A, Li CZ, Saha P (2006) J Mater Sci 41:5047. doi: https://doi.org/10.1007/s10853-006-0126-4 CrossRefGoogle Scholar
  16. 16.
    Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202CrossRefGoogle Scholar
  17. 17.
    Cho MS, Choi HJ, Kim KY, Ahn WS (2002) Macromol Rapid Commun 23:713CrossRefGoogle Scholar
  18. 18.
    Liu ZP, Lin YB, Wen XH, Su Q (2005) Colloid Surf A 264:55CrossRefGoogle Scholar
  19. 19.
    Hiamtup P, Sirivat A, Jamieson M (2006) J Colloid Interface Sci 295:270CrossRefGoogle Scholar
  20. 20.
    Xiao JJ, Huang JP, Yu KW (2008) J Phys Chem B 112:6767CrossRefGoogle Scholar
  21. 21.
    Hong CH, Choi HJ, Seo Y (2008) Synth Met 158:72CrossRefGoogle Scholar
  22. 22.
    Kim YD, Kim JH (2008) Synth Met 158:479CrossRefGoogle Scholar
  23. 23.
    De Kee D, Turcotte G (1980) Chem Eng Commun 6:273CrossRefGoogle Scholar
  24. 24.
    Cho MS, Choi HJ, Jhon MS (2005) Polymer 46:11484CrossRefGoogle Scholar
  25. 25.
    Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y (2007) Polymer 48:6622CrossRefGoogle Scholar
  26. 26.
    Espin MJ, Delgado AV, Plocharski JZ (2006) Rheol Acta 45:865CrossRefGoogle Scholar
  27. 27.
    Hong CH, Choi HJ, Jhon MS (2006) Chem Mater 18:2771CrossRefGoogle Scholar
  28. 28.
    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Polymer 49:4413CrossRefGoogle Scholar
  29. 29.
    Ko YG, Choi US, Chun YJ (2008) Macromol Chem Phys 209:890CrossRefGoogle Scholar
  30. 30.
    Zhu H, Kim YD, De Kee D (2005) J Non-Newtonian Fluid Mech 129:177CrossRefGoogle Scholar
  31. 31.
    Hong CH, Choi HJ (2006) Scripta Mater 55:415CrossRefGoogle Scholar
  32. 32.
    Ryu JC, Kim JW, Choi HJ, Choi SB, Kim JH (2003) J Mater Sci Lett 22:807CrossRefGoogle Scholar
  33. 33.
    Hong CH, Choi HJ (2007) Colloid Surf A 295:288CrossRefGoogle Scholar
  34. 34.
    Fang FF, Kim JH, Choi HJ, Seo YS (2007) J Appl Polym Sci 105:1853CrossRefGoogle Scholar
  35. 35.
    Chin BD, Winter HH (2002) Rheol Acta 41:265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations