Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3043–3048 | Cite as

Density of states effective mass of SnBi4Se7 deduced from the temperature dependence of electrical conductivity in the activation regime

  • S. A. AhmedEmail author
  • S. H. Mohamed
Article

Abstract

Current–voltage (IV) measurements on polycrystalline samples of Bi2Se3 and stoichiometric ternary compound in the quasi-binary system of SnSe–Bi2Se3 at different temperatures in the vicinity of room temperature have been performed. Also, temperature dependence of electrical conductivity has been measured. From the analysis of the temperature dependence of electron concentration in the activation regime above room temperature, the density of states effective mass, m*, has been determined. Some intrinsic and contact properties such as barrier heights, ideality factors, and carriers concentrations have been investigated using IV characteristics. It has been found that all samples exhibit ohmic and space charge limited conduction at low and high fields, respectively.

Keywords

Barrier Height Bi2Te3 Ideality Factor Bi2Se3 SnSe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of the authors (S. A. Ahmed) would like to thank Professor M. M. Wakkad for critical revising of the manuscript. He is also grateful to Dr. M. R. Ahmed and Dr. S. S. Sheishaa for their helpful English language support.

References

  1. 1.
    Birkholz U (1984) In: Heywang W (ed) Amorphe und Polykristalline Halbleiter, BerlinGoogle Scholar
  2. 2.
    Ahmed SA (2006) Philos Mag 86(9):1227CrossRefGoogle Scholar
  3. 3.
    Ahmed SA, Ibrahim EMM, Saleh SA (2006) Appl Phys A 85:177CrossRefGoogle Scholar
  4. 4.
    Choi J, Lee H-W, Kim B-S et al (2006) J Magn Magn Mater 304:e164CrossRefGoogle Scholar
  5. 5.
    Urazhdin S, Bile D, Mahanti SD et al (2004) Phys Rev B 69:85313CrossRefGoogle Scholar
  6. 6.
    Al Bayaz A, Giani A, Foucaran A et al (2003) Thin Solid Films 441:1CrossRefGoogle Scholar
  7. 7.
    George SD, Augustine S, Mathai E et al (2003) Phys Stat Sol A 196(2):384CrossRefGoogle Scholar
  8. 8.
    Greanya VA, Tonjes WC, Liu R et al (2002) J Appl Phys 92(11):6658CrossRefGoogle Scholar
  9. 9.
    Urazhdin S, Bile D, Tessmer SH et al (2002) Phys Rev B 66:161306CrossRefGoogle Scholar
  10. 10.
    Navratil J, Plechacek T, Horak J et al (2001) J Solid State Chem 160:474CrossRefGoogle Scholar
  11. 11.
    Nikam PS, Aher HS (1996) Indian J Pure Appl Phys 34:393Google Scholar
  12. 12.
    Sagar A, Faust JW (1967) J Appl Phys 38:482CrossRefGoogle Scholar
  13. 13.
    Morsli M, Amory C, Bougrine A et al (2007) J Phys D: Appl Phys 40:7675CrossRefGoogle Scholar
  14. 14.
    Mikhelashvili V, Eisenstein G, Uzdin R (2001) Solid-State Electron 45:143CrossRefGoogle Scholar
  15. 15.
    Sharma DK, Narasimhan KL, Kumar S et al (1989) J Appl Phys 65(5):1996CrossRefGoogle Scholar
  16. 16.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley & Sons, New YorkGoogle Scholar
  17. 17.
    Simon R (1962) J Appl Phys 33:1830CrossRefGoogle Scholar
  18. 18.
    Chung D-Y, Choi K-S, Iordanidis L et al (1997) Chem Mater 9:3060CrossRefGoogle Scholar
  19. 19.
    Cho S, DiVenere A, Wong GK et al (1999) Phys Rev B 59:10691CrossRefGoogle Scholar
  20. 20.
    Kuznetsova LA, Kuznetsov VL, Rowe DM (2000) J Phys Chem Solids 61:1269CrossRefGoogle Scholar
  21. 21.
    Marin G, Wasim SM, Sanchez Perez G et al (1998) J Electron Mater 27:1351CrossRefGoogle Scholar
  22. 22.
    Wasim SM, Essaleh L, Rincon C et al (2005) J Phys Chem Solids 66:1887CrossRefGoogle Scholar
  23. 23.
    Blakemore JS (1962) Semiconductors Statistics. Pergamon Press, USAGoogle Scholar
  24. 24.
    Nalos GS, Cohn JL, Dyck JS et al (2002) Phys Rev B 65:165201CrossRefGoogle Scholar
  25. 25.
    Dyck JS, Chen W, Yang J et al (2002) Phys Rev B 65:115204CrossRefGoogle Scholar
  26. 26.
    Khan ZH, Zulfeqaur M, Kumar A et al (2002) Can J Phys 80:19CrossRefGoogle Scholar
  27. 27.
    Pujari VB, Gaikwad VB, Masumdar EU et al (2002) Turk J Phys 26:407Google Scholar
  28. 28.
    Osinniy V, Jedrzejczak A, Arciszewska M et al (2001) Acta Physiol Pol A 100:327CrossRefGoogle Scholar
  29. 29.
    Huston AR (1959) J Phys Chem Solids 8:467CrossRefGoogle Scholar
  30. 30.
    Karamazov S, Horak J, Navratil J et al (1997) Cryst Res Technol 32(2):249CrossRefGoogle Scholar
  31. 31.
    Horak J, Vlcek M, Navratil J et al (1999) Sci Pap Univ Pardubice, Czech RepublicGoogle Scholar
  32. 32.
    Essaleh L, Wasim SM, Galibert J (2001) J Appl Phys 90:3993CrossRefGoogle Scholar
  33. 33.
    Castellan GW, Seitz F (1951) Semiconducting materials. Butterworths Scientific Publications, LondonGoogle Scholar
  34. 34.
    Perez Vicente C, Tirado JL, Adouby K et al (1999) Inorg Chem 38:2131CrossRefGoogle Scholar
  35. 35.
    Debye PP, Conwell EM (1954) Phys Rev 93:693CrossRefGoogle Scholar
  36. 36.
    Wasim SM, Albornoz JG (1988) Phys Stat Sol A 110(2):575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Girls College of EducationUnaizahKingdom of Saudi Arabia

Personalised recommendations