Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3026–3034 | Cite as

The random crack core model for predicting the longitudinal tensile strengths of unidirectional composites

  • Hui YuanEmail author
  • Weidong Wen
  • Haitao Cui
  • Ying Xu
Article

Abstract

A perfect evolvement process of random crack cores is presented and a random crack core model for predicting the longitudinal tensile strengths of unidirectional composites is built in this paper. Based on the crack propagation rules, the numerical relationship of the number of random crack cores, evolvement probability of a random crack core evolving to critical size, and failure probability of a unidirectional composite are deduced. With considering some fibers breaks simultaneously and the influenced-length of the random crack cores increasing with the number of broken fibers, evolvement probability algorithms of a random crack core are developed based on the perfect evolvement process. At last, the longitudinal tensile strengths of unidirectional composites are predicted by the random crack core model, and the result shows that the random crack core model is more accurate than the classical theoretical models.

Keywords

Markov Process Failure Probability Stress Concentration Factor Crack Evolvement Break Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kim HG (2008) Mater Sci Eng A Sruct Mater 135:483Google Scholar
  2. 2.
    Reifsnider K, Case S, Duthoit J (2000) Compos Sci Technol 60:2539CrossRefGoogle Scholar
  3. 3.
    Gucer DE, Gurland J (1962) J Mech Phys Solids 10(4):365CrossRefGoogle Scholar
  4. 4.
    Rosen BW (1964) AIAA 2:1985CrossRefGoogle Scholar
  5. 5.
    Curtin WA (1991) J Mater Sci 26:5239. doi: https://doi.org/10.1007/BF01143218 CrossRefGoogle Scholar
  6. 6.
    Curtin WA (1999) Adv Appl Mech 36:163CrossRefGoogle Scholar
  7. 7.
    Zweben C (1986) AIAA 6(12):2325CrossRefGoogle Scholar
  8. 8.
    Zweben C, Rosen BW (1970) J Mech Phys Solids 18(3):189CrossRefGoogle Scholar
  9. 9.
    Batdorf SB (1982) J Reinf Plast Compos 14:153CrossRefGoogle Scholar
  10. 10.
    Batdorf SB, Ghaffarian R (1982) J Reinf Plast Compos 14:165CrossRefGoogle Scholar
  11. 11.
    Zeng QD (1994) Compos Sci Technol 52(4):481CrossRefGoogle Scholar
  12. 12.
    Harlow DG, Phoenix SL (1981) Int J Fract 17:601CrossRefGoogle Scholar
  13. 13.
    Pitt RE, Phoenix SL (1982) Int J Fract 20:291CrossRefGoogle Scholar
  14. 14.
    Goda K (2003) Int J Solids Struct 40:6813CrossRefGoogle Scholar
  15. 15.
    Camata G, Corotisa R, Spacone E (2004) Probabilist Eng Mech 19:33CrossRefGoogle Scholar
  16. 16.
    Okabe T, Sekine H, Ishii K et al (2005) Compos Sci Technol 65:921CrossRefGoogle Scholar
  17. 17.
    Coleman BD (1958) J Mech Phys Solids 7:60CrossRefGoogle Scholar
  18. 18.
    Kelly A, Tyson WR (2000) J Mech Phys Solids. 48:621CrossRefGoogle Scholar
  19. 19.
    Smith RL (1980) Proc Roy Soc London Ser A 372:539CrossRefGoogle Scholar
  20. 20.
    Smith RL, Pheonix SL (1983) Int J Solids Struct 19:479CrossRefGoogle Scholar
  21. 21.
    Tsai SW, Hahn HT (1980) Introduction to composite materials. Lancaster, USAGoogle Scholar
  22. 22.
    ASTM (1982) Standard test method for tensile properties of fiber resin composites. Amer Soc Test Mater. D3039-76Google Scholar
  23. 23.
    Gundel DB, Wawner FE (1997) Compos Sci Technol 57:471CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations