Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2992–2998 | Cite as

A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method

  • M. M. RashadEmail author
  • Z. I. Zaki
  • H. El-Shall
Letter

Introduction

Magnesium aluminate spinel (MgAl2O4) posseses a unique combination of desirable properties such as high melting point (2,135 °C), good mechanical strength at room and evaluated temperatures, high chemical inertness, low dielectric constant and electrical losses, good shock resistance, and excellent optical properties [1]. Due to these desirable properties, it has a wide range of applications in structural, chemical, optical, and electrical industries. MgAl2O4 has mainly been used as refractory in heavy industry and as substrate for solid-state electronic devices. Nowadays, new potential applications have been reported including; ceramic ultra-filtration membranes, electro-insulators, and optical materials such as optically transparent, fiber-optic temperature sensors, tunable solid-state lasers, matrix for fabrication of optical nanodevices, high-brightness phosphor screen, catalysis, and humidity sensor applications. Furthermore, the MgAl2O4spinel has been employed as...

Keywords

Crystallite Size MgAl2O4 Magnesium Aluminate Mechanochemical Synthesis MgAl2O4 Spinel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li J-G, Ikegami T, Lee J-H, Mori T, Yajima Y (2001) Ceram Int 27:481CrossRefGoogle Scholar
  2. 2.
    Reveron H, Campos DG, Rodriguez RM, Bonassin JC (2002) Mater Lett 56:97CrossRefGoogle Scholar
  3. 3.
    Kingery WD, Uhlmann DR (1976) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  4. 4.
    Dericioglu AF, Kagawa Y, European J (2003) Ceram Soc 23:951CrossRefGoogle Scholar
  5. 5.
    Shimizu Y, Arai H, Seiyama T (1985) Sens Actuators 7:11CrossRefGoogle Scholar
  6. 6.
    Gusmamo GMG, Travera E, Bearzotti A (1993) Sens Actuators B 1314:525CrossRefGoogle Scholar
  7. 7.
    Ji-Guang L, Ikegami T, Jong-Heun L, Mori T (2000) J Am Ceram Soc 83(11):2866Google Scholar
  8. 8.
    Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S (2008) Mater Res Bull 43:1188CrossRefGoogle Scholar
  9. 9.
    Gritsyna VT, Kazarinov YuG, Kobyakov VA, Reimanis IE (2006) Nucl Instrum Methods Phys Res B 250:342CrossRefGoogle Scholar
  10. 10.
    Alinejad B, Sarpoolaky H, Beitollahi A, Saberi A, Afshar S (2008) Mater Res Bull 43:1188CrossRefGoogle Scholar
  11. 11.
    Iqbal MJ, Farooq S (2007) Mater Sci Eng B 136:140CrossRefGoogle Scholar
  12. 12.
    Guo J, Lou H, Zhao H, Wang X, Zheng X (2004) Mater Lett 58:1920CrossRefGoogle Scholar
  13. 13.
    Zawrah MF, Hamaad H, Meky S (2007) Ceram Inter 33:969CrossRefGoogle Scholar
  14. 14.
    Wajler A, Tomaszewski H, Drożdż-Cieśla E, Węglarz H, Kaszkur Z (2008) J Eur Ceram Soc 28:2495. doi: https://doi.org/10.1016/jeurceramsoc.2008.03.013 CrossRefGoogle Scholar
  15. 15.
    Duan XL, Song CF, Wu YC, Yu FP, Cheng XF, Yuan DR (2008) J Non-Cryst Solids 354:3516CrossRefGoogle Scholar
  16. 16.
    Dawson WJ (1988) Ceram Bull 67:1673Google Scholar
  17. 17.
    Andeen D, Loeffler L, Padture N, Lange FF (2003) J Cryst Growth 259:103CrossRefGoogle Scholar
  18. 18.
    Ganesh I, Johnson R, Rao GVN, Mahajan YR, Madavendra SS, Reddy BM (2005) Ceram Int 31:67CrossRefGoogle Scholar
  19. 19.
    Meyer F, Dierstein A, Beck CH, Härti W, Hempelmann R, Mathur S, Veith M (1999) Nano Struct Mater 12:71CrossRefGoogle Scholar
  20. 20.
    Saberi A, Fard FG, Sarpoolaky H, Porada MW, Gerdes T, Simon R (2008) J Alloys Compds 462:142. doi: https://doi.org/10.1016/J.jallcom.2007.07.101 CrossRefGoogle Scholar
  21. 21.
    Ianoş R, Lazău I, Păcurariu C, Barvinschi P (2008) Mater Res Bull 43:3408CrossRefGoogle Scholar
  22. 22.
    Păcurariu C, Lazău I, Ecsedi Z, Lazău R, Barvinschi P, Mărginean G (2007) J Eur Ceram Soc 27:707CrossRefGoogle Scholar
  23. 23.
    Haijun Z, Xiaolin J, Yongjie Y, Zhanjie L, Daoyuan Y, Zhenzhen L (2004) Mater Res Bull 39:839CrossRefGoogle Scholar
  24. 24.
    Pan XL, Sheng SS, Xiong GX, Fang KM, Tudyka S, Stroh N, Brunner H (2001) Colloids Surf A Physicochem Eng Asp 179:163CrossRefGoogle Scholar
  25. 25.
    Wang CT, Lin LS, Yang SJ (1992) J Am Ceram Soc 75:2240CrossRefGoogle Scholar
  26. 26.
    Yalamac E, Akkurt S, Ciftcioglu M (2003) Key Eng Mater 264–268:53Google Scholar
  27. 27.
    Domanski D, Urretavizcaya G, Castro FJ, Gennari FC, Am J (2004) Ceram Soc 87:2020CrossRefGoogle Scholar
  28. 28.
    Rashad MM, Radwan M, Hessien MM (2008) J Alloys Compd 3:304CrossRefGoogle Scholar
  29. 29.
    Iqbal MI, Ashiq MN (2008) Chem Eng J 136:383CrossRefGoogle Scholar
  30. 30.
    Iqbal MI, Ashiq MN, Gomez PH, Munoz JM (2008) J Magn Magn Mater 320:881CrossRefGoogle Scholar
  31. 31.
    Hessien MM, Rashad MM, El-Barawy K (2008) J Magn Magn Mater 320:336CrossRefGoogle Scholar
  32. 32.
    Bassett J, Denney RC, Jeffery GH, Mendham J (1978) Vogel’s textbook of quantitative inorganic chemistry. Longman, LondonGoogle Scholar
  33. 33.
    Bocanegra SA, Ballarini AD, Scelza OA, de Miguel SR (2008) Mater Chem Phys 111:534CrossRefGoogle Scholar
  34. 34.
    Allen E, Henshaw J, Smith P (2001) A review of agglomeration. US Department of EnergyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Central Metallurgical Research and Development InstituteHelwan, CairoEgypt
  2. 2.Engineering Research Center, Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations