Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2977–2984 | Cite as

Preparation and investigation of PVDF/PMMA/TiO2 composite film

  • Wei Li
  • Hong Li
  • Yong-Ming ZhangEmail author
Article

Abstract

Polyvinylidene fluoride (PVDF)/Polymethylmethacrylate (PMMA)/Titanium dioxide (TiO2) composite, and its films was prepared and studied in detail. The structure, morphology, crystalline behavior, thermal, and mechanical properties of PVDF/PMMA/TiO2 film were investigated through FT-IR/ATR, SEM, XRD, DSC, TGA, and Py-GC/MS, respectively. The results showed that the blended material and its film have favorable thermal and mechanical properties. The TiO2 particles finely dispersed in the composite featured by crystalline regions of PVDF and homogeneous amorphous regions consisted of PVDF and PMMA, resulting in an advantageous properties and improvement of tensile strength and elongation at break of the PVDF/PMMA film. However, the TiO2 can greatly narrow the thermally stable margin of PVDF in PVDF/PMMA/TiO2 composite for at least 100 °C with catalysis decomposition effect.

Keywords

TiO2 Differential Scanning Calorimetry PMMA PVDF Composite Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors acknowledge the grant of funds sanctioned for the “11th 5-year” National Key Technologies R&D Program (No. 2006BAE02A04) and Sino-Canada International Project (20073823).

References

  1. 1.
    Kirk-Othmer (1980) Encyclopedia of Chemical Technology. John Wiley & Sons Inc, USAGoogle Scholar
  2. 2.
    Bonnet A, Francois B, Karine L et al (2004) US Patent 6811,859Google Scholar
  3. 3.
    Liu ZH, Marechal P, Jerome R (1998) Polymer 39:1779–1785CrossRefGoogle Scholar
  4. 4.
    Roerdrink E, Challa G (1978) Polymer 19:73CrossRefGoogle Scholar
  5. 5.
    Iezzi RA (1997) In: Scheirs J (ed) Modern fluoropolymers. Wiley, New YorkGoogle Scholar
  6. 6.
    Noland JS, Hsu NNC, Saxon R et al (1971) Adv Chem Ser 99:15CrossRefGoogle Scholar
  7. 7.
    Nakagawa K, Ishida Y (1973) J Polym Sci B Polym Phys 11:2153–2171CrossRefGoogle Scholar
  8. 8.
    Nishi T, Wang TT (1975) Macromolecules 8:909CrossRefGoogle Scholar
  9. 9.
    Paul DR, Altamirano JO (1975) Adv Chem Ser 142:371CrossRefGoogle Scholar
  10. 10.
    Bernstein RE, Cruz CA, Paul DR et al (1977) Macromolecules 10:681CrossRefGoogle Scholar
  11. 11.
    Huang C, Zhang L (2004) J Appl Polym Sci 92:1–5CrossRefGoogle Scholar
  12. 12.
    Horibe H, Baba F (2000) Nippon Kagaku Kaishi, pp 115–120Google Scholar
  13. 13.
    Jarray J, Larbi FBC, Vanhulle F et al (2003) Macromolecular Symposia 198:103–116CrossRefGoogle Scholar
  14. 14.
    Yoshida H (1997) J Therm Anal 49:101–105CrossRefGoogle Scholar
  15. 15.
    Yoshida H, Zhang GZ, Kitamura T et al (2001) J Therm Anal Calorim 64:577–583CrossRefGoogle Scholar
  16. 16.
    Hirata Y, Kotaka T (1981) Polym J 13:273CrossRefGoogle Scholar
  17. 17.
    Mijovic J, Luo HL, Han CD (1982) Polym Eng Sci 22:234CrossRefGoogle Scholar
  18. 18.
    Murff SR, Barlow JW, Paul DR (1986) Adv Chem Ser 211:313–324CrossRefGoogle Scholar
  19. 19.
    Schneider S, Drujon X, Wittmann JC et al (2001) Polymer 42:8799–8806CrossRefGoogle Scholar
  20. 20.
    Sun YP, Hao EC, Zhang X et al (1997) Langmuir 13:5168–5174CrossRefGoogle Scholar
  21. 21.
    Pinnavaia TJ, Beall GW (2001) Polymer-clay nanocomposites. John Wiley and Sons, New YorkGoogle Scholar
  22. 22.
    Cao XC, Ma J, Shi XH et al (2006) Appl Surf Sci 253:2003–2010CrossRefGoogle Scholar
  23. 23.
    Smillie BA, Lenges GM (2006) US No. 960,426:9Google Scholar
  24. 24.
    Li C, Tang AB, Zou YB et al (2005) Mater Lett 59:59–63CrossRefGoogle Scholar
  25. 25.
    Liaw WC, Chen KP (2007) Eur Polym J 43:2265–2278CrossRefGoogle Scholar
  26. 26.
    Laachachi A, Ferriol M, Cochez M et al (2008) Polym Degrad Stab 93:1131–1137CrossRefGoogle Scholar
  27. 27.
    Gu MH, Zhang J, Wang XL et al (2006) J Appl Polym Sci 102:3714–3719CrossRefGoogle Scholar
  28. 28.
    Bormashenko Y, Pogreb R, Stanevsky O et al (2004) Polym Test 23:791–796CrossRefGoogle Scholar
  29. 29.
    Wang CL, Li JC, Zhong WL et al (2003) Synth Met 135:469–470CrossRefGoogle Scholar
  30. 30.
    Kobayashi M, Tashiro K, Tadokoro H (1975) Macromolecules 8:158CrossRefGoogle Scholar
  31. 31.
    Kazarian SG, Chan KLA (2004) Macromolecules 37:579–584CrossRefGoogle Scholar
  32. 32.
    Ahmad S, Saxena TK, Ahmad S et al (2006) J Power Sources 159:205–209CrossRefGoogle Scholar
  33. 33.
    Cebe P, Chung SY (1990) J Mater Sci 25:2367–2378. doi:  https://doi.org/10.1007/BF00638031 CrossRefGoogle Scholar
  34. 34.
    Richardson MJ, Savill NG (1977) Polymer 18:413CrossRefGoogle Scholar
  35. 35.
    Zhou XX, Cakmak M (2007) J Macromol Sci Phys 46:667–682CrossRefGoogle Scholar
  36. 36.
    Gallagher GA, Jakeways R, Ward LM (1991) J Polym Sci B Polym Phys 29:1147CrossRefGoogle Scholar
  37. 37.
    Feng W, Sun EH, Fujii A et al (2000) Bull Chem Soc Jpn 73:2627–2633CrossRefGoogle Scholar
  38. 38.
    Sawada T, Ando S (1998) Chem Mater 10:3368–3378CrossRefGoogle Scholar
  39. 39.
    Rancourt JD, Taylor LT (1987) Macromolecules 20:790–795CrossRefGoogle Scholar
  40. 40.
    Kim BC, Choi CG, Han SP et al (2002) Polymer-Korea 26:462–467Google Scholar
  41. 41.
    Sajkiewicz P, Wasiak A, Goclowski Z (1999) Eur Polym J 35:1581–1590CrossRefGoogle Scholar
  42. 42.
    Gregorio RJ, Cestari M (1994) J Polym Sci B Polym Phys 32:859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical TechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations