Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2938–2944 | Cite as

Improvement of alkali corrosion resistance of mullite ceramics at high temperature by depositing Ca0.3Mg0.2Zr2(PO4)3 coating

  • Xiaozhen ZhangEmail author
  • Jianer Zhou
  • Jiandong Wang
  • Yuahua Jiang
Article

Abstract

Ca0.3Mg0.2Zr2(PO4)3 coating was deposited on the mullite ceramic to improve its alkali corrosion resistance at high temperatures, using sol–gel method and dip-coating technique. The phase composition and microstructure of the coating were characterized by X-ray diffraction and scanning electron microscopy (SEM). Results show that homogeneous, dense and single-phase Ca0.3Mg0.2Zr2(PO4)3 coating was successfully deposited on mullite ceramics. SEM microstructural examination revealed the excellent bonding between Ca0.3Mg0.2Zr2(PO4)3 coating and mullite ceramics. The effectiveness of the prepared coating to improve the alkali corrosion resistance of mullite ceramics was assessed through the measurements of mass loss and flexural strength degradation after 96 h and longer exposure time at alkali corrosion condition at 1000 °C. A significant enhancement of the alkali corrosion resistance for Ca0.3Mg0.2Zr2(PO4)3-coated mullite samples was observed. Therefore, the effectiveness of the Ca0.3Mg0.2Zr2(PO4)3 material as protection coating for mullite ceramic is confirmed.

Keywords

Contact Angle Strength Degradation Uncoated Sample Zirconium Oxychloride Triethyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akira O (2008) J Eur Ceram Soc 28:1097CrossRefGoogle Scholar
  2. 2.
    Alvin MA (1996) Ind Eng Chem Res 35:3384CrossRefGoogle Scholar
  3. 3.
    Lippert TE, Lane JE (1991) Am Ceram Soc Bull 70:1491Google Scholar
  4. 4.
    Fredericci C, Morelli MR (2000) Mater Res Bull 35:2503CrossRefGoogle Scholar
  5. 5.
    Aksel C (2003) Ceram Int 29:305CrossRefGoogle Scholar
  6. 6.
    Moya JS, Steier HP, Requena J (1999) Composites Part A 30:439CrossRefGoogle Scholar
  7. 7.
    Fritsch M, Klemm H, Herrmann M, Schenk B (2006) J Eur Ceram Soc 26:3557CrossRefGoogle Scholar
  8. 8.
    Hirata T, Ota S, Morimoto T (2003) J Eur Ceram Soc 23:91CrossRefGoogle Scholar
  9. 9.
    Jacobson NS, Opila EJ, Lee KN (2001) Curr Opin Solid State Mater Sci 5:301CrossRefGoogle Scholar
  10. 10.
    Takahashi J, Kawai Y, Shimada S (1998) J Eur Ceram Soc 18:1121CrossRefGoogle Scholar
  11. 11.
    Takahashi J, Kawai Y, Shimada S (2002) J Eur Ceram Soc 22:1959CrossRefGoogle Scholar
  12. 12.
    Jacobson NS, Lee KN, Yoshio T (1996) J Am Ceram Soc 79:2161CrossRefGoogle Scholar
  13. 13.
    Ueno S, Jayaseelan DD, Ohji T (2004) Int J Appl Ceram Technol 1:362CrossRefGoogle Scholar
  14. 14.
    Lee KN (2000) Surf Coat Technol 133–134:1Google Scholar
  15. 15.
    Lee KN, Miller RA (1996) Surf Coat Technol 86–87:142CrossRefGoogle Scholar
  16. 16.
    Schneider H, Schreuer J, Hildmann B (2008) J Eur Ceram Soc 28:329CrossRefGoogle Scholar
  17. 17.
    Li TK, Hirschfeld DA, Vanaken S (1993) J Mater Res 8:2954CrossRefGoogle Scholar
  18. 18.
    Russ WM (1994) Master’s Thesis, Department of Materials Science and Engineering, Virginia TechGoogle Scholar
  19. 19.
    Breval E, Mckinstry HA, Agrawal DK (2000) J Mater Sci 35:3359. doi: https://doi.org/10.1023/A:1004828917908 CrossRefGoogle Scholar
  20. 20.
    Jacques L (1997) Curr Opin Solid State Mater Sci 2:132CrossRefGoogle Scholar
  21. 21.
    Duckworth W (1953) J Am Ceram Soc 36:68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaozhen Zhang
    • 1
    Email author
  • Jianer Zhou
    • 1
  • Jiandong Wang
    • 1
  • Yuahua Jiang
    • 1
  1. 1.National Research Center for Ceramic Engineering and Technology, School of Material Science and EngineeringJingdezhen Ceramic Institute (JCI)JingdezhenPeople’s Republic of China

Personalised recommendations