Journal of Materials Science

, Volume 44, Issue 11, pp 2907–2915 | Cite as

Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium

  • Yibing XieEmail author
  • Limin Zhou
  • Jian Lu


Surface nanocrystallization of titanium metal is processed by a high-energy shot peening treatment for drastic subdivision of bulk crystalline grains. Titania nanotube array directly grown on the nanocrystalline titanium substrate is achieved by a controlled anodization process. Field emission scanning electron microscopy, X-ray diffraction, and impedance spectroscopy analysis are conducted to investigate surface morphology, crystal phase, and electrical conductivity, respectively. The photoelectrochemical performance of the tailored titania nanotubes/titanium nanocrystallites has been investigated under UV light illumination. When the microstructure of the titanium substrate is modified from bulk crystals to nanocrystallites, the obtained titania nanotube array exhibits an independent structure with enlarged pore size and thinned tube wall, which is ascribed to the intensified anodic oxidation of ultrafine titanium crystallites along intergranular boundaries. Owing to the promoted interfacial electron transfer of the titania/nanocrystalline titanium, the complex impedance predominated by the charge transfer resistance has been significantly decreased in the electrochemical process. Both photocurrent and photovoltage responses have accordingly enhanced as well in the photoelectrochemical process.


TiO2 Space Charge Layer Surface Mechanical Attrition Treatment Interfacial Electron Transfer Photoelectrochemical Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by National Natural Science Foundation of China (No. 20871029), Research Fund for the Doctoral Program of Higher Education of China (No. 200802861071), and Program for New Century Excellent Talents in University.


  1. 1.
    Xie YB, Yuan CW (2005) J Mater Sci 40:6375. doi: CrossRefGoogle Scholar
  2. 2.
    Yoon JH, Jang SR, Vittal R, Lee J, Kim KJ (2006) J Photochem Photobiol A Chem 180:184CrossRefGoogle Scholar
  3. 3.
    Tan B, Wu YY (2006) J Phys Chem B 110:15932CrossRefGoogle Scholar
  4. 4.
    Chu SZ, Wada K, Inoue S, Todoroki S (2002) Chem Mater 14:266CrossRefGoogle Scholar
  5. 5.
    Xie YB (2006) Electrochim Acta 51:3399CrossRefGoogle Scholar
  6. 6.
    Peng XS, Chen AC (2006) Adv Funct Mater 16:1355CrossRefGoogle Scholar
  7. 7.
    Wen BM, Liu CY, Liu Y (2005) Chem Lett 34:396CrossRefGoogle Scholar
  8. 8.
    Yu XF, Li YX, Ge WY, Yang QB, Zhu NF, Kalantar-Zadeh K (2006) Nanotechnology 17:808CrossRefGoogle Scholar
  9. 9.
    Tong WP, Tao NR, Wang ZB, Lu J, Lu K (2003) Science 299:686CrossRefGoogle Scholar
  10. 10.
    Tang XH, Li DY (2008) Scr Mater 58:1090CrossRefGoogle Scholar
  11. 11.
    Zhang SL, Chen HN, Lin QH (2004) J Mater Sci Technol 20:716Google Scholar
  12. 12.
    Huang L, Lu J, Troyon M (2006) Surf Coat Technol 201:208CrossRefGoogle Scholar
  13. 13.
    Yi JH, Bernard C, Variola F, Zalzal SF, Wuest JD, Rosei F, Nanci A (2006) Surf Sci 600:4613CrossRefGoogle Scholar
  14. 14.
    Choi JS, Wehrspohn RB, Lee J, Gosele U (2004) Electrochim Acta 49:2645CrossRefGoogle Scholar
  15. 15.
    Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331CrossRefGoogle Scholar
  16. 16.
    Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505CrossRefGoogle Scholar
  17. 17.
    Elsanousi A, Zhang J, Fadlalla HMH, Zhang F, Wang H, Ding XX, Huang ZX, Tang CC (2008) J Mater Sci 43:7219. doi: CrossRefGoogle Scholar
  18. 18.
    Jaroenworaluck A, Regonini D, Bowen CR, Stevens R, Allsopp D (2007) J Mater Sci 42:6729. doi: CrossRefGoogle Scholar
  19. 19.
    Guo FA, Zhu KY, Trannoy N, Lu J (2004) Thermochimica Acta 419:239CrossRefGoogle Scholar
  20. 20.
    Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Acta Mater 52:4101CrossRefGoogle Scholar
  21. 21.
    Xie YB (2006) Adv Funct Mater 16:1823CrossRefGoogle Scholar
  22. 22.
    He LP, Mai YW, Chen ZZ (2004) Nanotechnology 15:1465CrossRefGoogle Scholar
  23. 23.
    Marino CE, de Oliveira EM, Rocha RC, Biaggio SR (2001) Corros Sci 43:1465CrossRefGoogle Scholar
  24. 24.
    Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100CrossRefGoogle Scholar
  25. 25.
    Schmidt T, Martel R, Sandstrom RL, Avouris P (1998) Appl Phys Lett 73:2173CrossRefGoogle Scholar
  26. 26.
    Abidian MR, Kim DH, Martin DC (2006) Adv Mater 18:405CrossRefGoogle Scholar
  27. 27.
    Marsh J, Gorse D (1998) Electrochim Acta 43:659CrossRefGoogle Scholar
  28. 28.
    Yuan S, Hu SS (2004) Electrochim Acta 49:4287CrossRefGoogle Scholar
  29. 29.
    Mantzila AG, Prodromidis MI (2006) Electrochim Acta 51:3537CrossRefGoogle Scholar
  30. 30.
    Oliva FY, Avalle LB, Santos E, Camara OR (2002) J Photochem Photobiol A Chem 146:175CrossRefGoogle Scholar
  31. 31.
    Beranek R, Tsuchiya H, Sugishima T, Macak JM, Taveira L, Fujimoto S, Kisch H, Schmuki P (2005) Appl Phys Lett 87:243114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong, China

Personalised recommendations