Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2865–2875 | Cite as

Organo-functionalized mesoporous supports for Jacobsen-type catalyst: Laponite versus MCM-41

  • Pankaj Das
  • Ana Rosa Silva
  • Ana P. Carvalho
  • João PiresEmail author
  • Cristina FreireEmail author
Article

Abstract

In order to exploit the different textural properties of Laponite and MCM-41, specifically in terms of their external versus internal surface areas, in the covalent anchoring of a chiral Mn(III) salen complex, these materials were functionalized with 3-aminopropyltriethoxysilane (APTES), subsequently activated with sodium ethoxide, and finally used to anchor the Jacobsen catalyst derivative C1. All the materials were characterized by nitrogen elemental analysis, XPS, PXRD, nitrogen adsorption at −196 °C, FTIR and for those with the immobilized complex, they were additionally characterized by Mn AAS. The APTES anchored at the edges of the Laponite single crystals and inside the MCM-41 pores. Moreover, under the same preparative conditions, higher amount of APTES was anchored onto MCM-41 than onto Laponite, which is due to the higher surface area of MCM-41 compared to Laponite, as well as to its more exposed SiO4 tetrahedra. Activation of the two organo-functionalized materials with sodium ethoxide originated anionic nitrogen groups as deduced by the increase of surface sodium content of these materials and N1s binding energy changes, but led to a small decrease in N bulk content as a result of some APTES leaching. Moreover, for MCM-41 some disruption of the silica framework occurred as a consequence of the basic treatment, as suggested by XPS, PXRD, and nitrogen adsorption study. The APTES functionalized Laponite and MCM-41 materials, as well as the activated analogs, were able to anchor C1 through axial coordination of the metal centre to the grafted surface nitrogen atoms. APTES functionalized MCM-41 presented similar complex content to Laponite analog, what points out for the fact that, at least for the bulky complex used in this work, there was no clear benefit in using a material of high internal area; for the ethoxide activated analogs, Laponite showed the highest complex content of all materials, but MCM-41 was able to anchor the lowest complex quantity, probably as a consequence of damaging effect caused by the basic treatment within its porous structure.

Keywords

Mesoporous Volume Sodium Ethoxide Internal Surface Area Salen Complex Complex Immobilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by Fundação para a Ciência e a Tecnologia (FCT) and FEDER, through the project ref. POCI/CTM/56192/2004. PD thanks FCT for a Post-Doctoral fellowship.

Supplementary material

10853_2009_3379_MOESM1_ESM.doc (72 kb)
(DOC 110 kb)

References

  1. 1.
    Jacobsen EN, Wu MH (1999) In: Pfaltz A, Jacobsen EN, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer-Verlag, BerlinCrossRefGoogle Scholar
  2. 2.
    Katsuki T (1995) Coord Chem Rev 140:189CrossRefGoogle Scholar
  3. 3.
    McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563CrossRefGoogle Scholar
  4. 4.
    Choudary BM, Chowdari NS, Kantam ML, Santhi PL (2001) Catal Lett 76:213CrossRefGoogle Scholar
  5. 5.
    Park DW, Choi SD, Choi SJ, Lee CY, Kim GJ (2002) Catal Lett 78:145CrossRefGoogle Scholar
  6. 6.
    Piaggio P, Langham C, McMorn P, Bethell D, Bulman-Page PC, Hancock FE, Sly C, Hutchings GJ (2000) J Chem Soc Perkin Trans 2:143CrossRefGoogle Scholar
  7. 7.
    Bigi F, Moroni L, Maggi R, Satori G (2002) Chem Commun 716:716CrossRefGoogle Scholar
  8. 8.
    Kim GJ, Kim SH (1999) Catal Lett 57:139CrossRefGoogle Scholar
  9. 9.
    Zhang HS, Xiang J, Xiao LC (2005) J Mol Catal A Chem 238:175CrossRefGoogle Scholar
  10. 10.
    Kureshy RI, Ahmad I, Khan NH, Abdi SHR, Singh S, Pandia PH, Jasra RV (2005) J Catal 235:28CrossRefGoogle Scholar
  11. 11.
    Xiang S, Zhang Y, Xin Q, Li C (2002) Chem Commun 2696Google Scholar
  12. 12.
    Xia Q-H, Ge H-Q, Ye C-P, Liu Z-M, Su K-X (2005) Chem Rev 105:1603CrossRefGoogle Scholar
  13. 13.
    Zhang H, Xiang S, Li C (2005) Chem Commun 1209Google Scholar
  14. 14.
    Kim G-J, Shin J-H (1999) Tetrahedron Lett 40:6827CrossRefGoogle Scholar
  15. 15.
    Sabater MJ, Corma A, Domenech A, Fornes V, Garcia H (1997) Chem Commun 1285Google Scholar
  16. 16.
    Heinrichs C, Holderich WF (1999) Catal Lett 58:75CrossRefGoogle Scholar
  17. 17.
    Gbery G, Zsigmond A, Balkus KJ Jr (2001) Catal Lett 74:77CrossRefGoogle Scholar
  18. 18.
    Reger TS, Jinda KD (2000) J Am Chem Soc 122:6929CrossRefGoogle Scholar
  19. 19.
    Angelino MD, Laibinis PEJ (1999) Polym Sci A Polym Chem 37:3888CrossRefGoogle Scholar
  20. 20.
    Song CE, Roh EJ, Yu BM, Chi DY, Kim SC, Lee KJ (2000) Chem Commun 615Google Scholar
  21. 21.
    Minutolo F, Pini D, Petri A, Salvadori P (1996) Tetrahedron Asym 7:2293CrossRefGoogle Scholar
  22. 22.
    Canali L, Cowan E, Deleuze H, Gibson CL, Sherrington DC (2000) J Chem Soc Perkin Trans 2055Google Scholar
  23. 23.
    Kureshy RI, Khan NH, Abdi SHR, Ahmad I, Singh S, Jasra RV (2003) Catal Lett 91:207CrossRefGoogle Scholar
  24. 24.
    Fraile JM, García JI, Massam JA, Mayoral JA (1998) J Mol Catal A Chem 136:47CrossRefGoogle Scholar
  25. 25.
    Kureshy RI, Khan NH, Abdi SHR, Ahmad I, Singh S, Jasra RV (2004) J Catal 221:234CrossRefGoogle Scholar
  26. 26.
    Silva AR, Vital J, Figueiredo JL, Freire C, Castro B (2003) New J Chem 27:1511CrossRefGoogle Scholar
  27. 27.
    Silva AR, Castro B, Freire C (2004) Carbon 42:3027CrossRefGoogle Scholar
  28. 28.
    Silva AR, Budarin V, Clark JH, Castro B, Freire C (2005) Carbon 43:2096CrossRefGoogle Scholar
  29. 29.
    Baleizão C, Gigante B, Sabater MJ, Garcia H, Corma A (2002) Appl Catal A Gen 228:279CrossRefGoogle Scholar
  30. 30.
    Shylesh S, Mirajkar SP, Singh AP (2005) J Mol Catal A Chem 239:57CrossRefGoogle Scholar
  31. 31.
    Zhou XG, Yu XQ, Huang JS, Li SG, Li LS, Che CM (1999) Chem Commun 1789Google Scholar
  32. 32.
    Dioos BML, Geurts WA, Jacobs PA (2004) Catal Lett 97:125CrossRefGoogle Scholar
  33. 33.
    Serrano DP, Aguado J, Garcia RA, Vargas C (2005) Stud Surf Sci Catal B 158:1493CrossRefGoogle Scholar
  34. 34.
    Wheeler PA, Wang J, Baker J, Mathias LJ (2005) Chem Mater 17:3012CrossRefGoogle Scholar
  35. 35.
    Herrera NN, Letoffe J-M, Reymond J-P, Bourgeat-Lami E (2005) J Mater Chem 15:863CrossRefGoogle Scholar
  36. 36.
    Herrera NN, Letoffe J-M, Putaux JL, David L, Bourgeat-Lami E (2004) Langmuir 20:1564CrossRefGoogle Scholar
  37. 37.
    Park M, Shim IK, Jung EY (2004) Phys Chem Solids 65:499CrossRefGoogle Scholar
  38. 38.
    Biernacka IK, Silva AR, Carvalho AP, Pires J, Freire C (2005) Langmuir 21:10825CrossRefGoogle Scholar
  39. 39.
    Pereira C, Patrício S, Silva AR, Magalhães AL, Carvalho AP, Pires J, Freire C (2007) J Colloid Interface Sci 316:570CrossRefGoogle Scholar
  40. 40.
    Pereira C, Silva AR, Carvalho AP, Pires J, Freire C (2008) J Mol Catal A Chem 283:5CrossRefGoogle Scholar
  41. 41.
    Jia M, Seifert A, Thiel WR (2003) Chem Mater 15:2174CrossRefGoogle Scholar
  42. 42.
    Baleizão C, Gigante B, Garcia H, Corma A (2003) J Catal 5:99Google Scholar
  43. 43.
    Das P, Silva AR, Carvalho AP, Pires J, Freire C (2008) Colloids Surf A: Physicochem Eng Aspects 329:190CrossRefGoogle Scholar
  44. 44.
    Das P, Silva AR, Carvalho AP, Pires J, Freire C (2009) Catal Lett (in press). doi: https://doi.org/10.1007/s10562-008-9793-x CrossRefGoogle Scholar
  45. 45.
    Grün M, Unger KK, Matsumoto A, Tsutsumi K (1997) In: McEnaney B, Mays TJ, Rouquerol J, Rodríguez-Reinoso F, Sing K, Unger KK (eds) Characterisation of porous solids IV. The Royal Society of Chemistry, LondonGoogle Scholar
  46. 46.
    Schmidt R, Stöcker M, Hansen E, Akporiaye D, Ellestad OH (1995) Microporous Mater 3:443CrossRefGoogle Scholar
  47. 47.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders & porous solid. Academic Press, LondonGoogle Scholar
  48. 48.
    Benazilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG (1995) Langmuir 10:665Google Scholar
  49. 49.
    Tatsumi T (2005) Proceedings of 15th Saudi-Japan joint symposium, Dahram, Saudi ArabiaGoogle Scholar
  50. 50.
    Handbook of chemistry and physics, 53rd edn. CRC Press, Boca Raton, 1972Google Scholar
  51. 51.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  52. 52.
    Barret EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  53. 53.
    Lukens WJ Jr, Schmidt-Winkel P, Zhao D, Feng J, Stucky GD (1999) Langmuir 15:5403CrossRefGoogle Scholar
  54. 54.
    Zhao XS, Lu GQ (1998) J Phys Chem B 102:1556CrossRefGoogle Scholar
  55. 55.
    Gavrilko T, Gnatyuk I, Puchkovskaya G, Goltsov Y, Matkovskaya L, Baran J, Ratajczak H (2000) Vib Spectrosc 23:199CrossRefGoogle Scholar
  56. 56.
    Borodko Y, Ager JWIII, Marti GE, Hong H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386CrossRefGoogle Scholar
  57. 57.
    Prado AGS, Airoldi C (2002) J Mater Chem 12:3823CrossRefGoogle Scholar
  58. 58.
    Bourlinos AB, Simopoulos A, Boukos N, Petridis D (2001) J Phys Chem B 105:7432CrossRefGoogle Scholar
  59. 59.
    Igarashi N, Koyano KA, Tanaka Y, Nakata S, Hashimoto K, Tatsumi T (2003) Microporous Mesoporous Mater 59:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.REQUIMTE, Departamento de Química, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  2. 2.Departamento de Química e Bioquímica and CQB, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  3. 3.Department of ChemistryDibrugarh UniversityDibrugarhIndia
  4. 4.Unilever R&D, Port SunlightBebingtonUK

Personalised recommendations