Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2858–2864 | Cite as

Study of composite joint strength with carbon nanotube reinforcement

  • S. D. Faulkner
  • Y. W. KwonEmail author
  • S. Bartlett
  • E. A. Rasmussen
Article

Abstract

In order to strengthen the interface of a composite scarf joint, this study investigated the benefits of using locally applied carbon nanotubes to reinforce a carbon fiber composite scarf joint. The effect of carbon nanotubes on enhancing the fracture toughness and interface strength was investigated by performing Mode I and Mode II fracture tests with and without carbon nanotubes applied locally at the joint interface. Furthermore, the effects of seawater absorption and different carbon nanotube concentration values on Mode II fracture were investigated. Finally, a partial application of carbon nanotubes only near the crack tip area was considered. During the study, the image correlation technique was used to examine the fracture mechanisms altered by the introduction of carbon nanotubes. The experimental study showed that an optimal amount of carbon nanotubes could increase the fracture toughness of the composite joint interface significantly, especially for Mode II, including a physical change in the fracture mechanism.

Keywords

Carbon Fiber Joint Interface Critical Energy Release Rate Methyl Ethyl Ketone Peroxide Seawater Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mouritz AP, Gellert E, Burchill P, Challis K (2001) Compos Struct 53:21CrossRefGoogle Scholar
  2. 2.
    Jones B (2006) Introduction to navy joints design. NSWC Carderock DivisionGoogle Scholar
  3. 3.
    Ganesh VK, Choo TS (2002) J Compos Mater 36:1757CrossRefGoogle Scholar
  4. 4.
    William D, Callister Jr (2007) Materials science and engineering: an introduction, 7th edn. Wiley and Sons, Inc, New YorkGoogle Scholar
  5. 5.
    Thostenson ET, Ren Z, Chou T (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  6. 6.
    Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Compos Sci Technol 64(15):2363CrossRefGoogle Scholar
  7. 7.
    Xia Z, Curtin WA, Sheldon BW (2004) J Eng Mater Technol 126(3):238CrossRefGoogle Scholar
  8. 8.
    Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Nat Mater 5:457CrossRefGoogle Scholar
  9. 9.
    Cadek M, Coleman JN, Ran KP, Nicolose V, Bister G, Fonseca A, Nagy JB, Szostzk K, Beguin F, Blau WJ (2004) Nano Lett 4(2):353CrossRefGoogle Scholar
  10. 10.
    Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Polymer 44:7757CrossRefGoogle Scholar
  11. 11.
    Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2001) Compos Sci Technol 61(13):1899CrossRefGoogle Scholar
  12. 12.
    Mylvaganam K, Zhang LC (2004) J Phys Chem B 108:5217CrossRefGoogle Scholar
  13. 13.
    Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73(26):3842CrossRefGoogle Scholar
  14. 14.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76(20):2868CrossRefGoogle Scholar
  15. 15.
    Liao K, Li S (2001) Appl Phys Lett 79(25):4225CrossRefGoogle Scholar
  16. 16.
    Kwon YW, Slaff R, Bartlett S, Greene T (2008) J Mater Sci 43:6695. doi: https://doi.org/10.1007/s10853-008-2689-8 CrossRefGoogle Scholar
  17. 17.
    ASTM Standard D 5528-01, Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, Mar 2002Google Scholar
  18. 18.
    Todo M, Nakamura T, Takahashi K (2000) J Compos Mater 34:630CrossRefGoogle Scholar
  19. 19.
    ASTM Standard D 1141-98, Standard practice for the preparation of substitute ocean water, Aug 2008Google Scholar

Copyright information

© Springer science+Business Media, LLC 2009

Authors and Affiliations

  • S. D. Faulkner
    • 1
  • Y. W. Kwon
    • 1
    Email author
  • S. Bartlett
    • 2
  • E. A. Rasmussen
    • 2
  1. 1.Department of Mechanical and Astronautical EngineeringNaval Postgraduate SchoolMontereyUSA
  2. 2.Structures and Composite DivisionNaval Surface Warfare CenterBethesdaUSA

Personalised recommendations