Journal of Materials Science

, Volume 44, Issue 11, pp 2851–2857 | Cite as

Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes

  • Kenneth J. D. MacKenzieEmail author
  • Matthew J. Bolton


The DC electrical conductance of potassium aluminosilicate inorganic polymers (geopolymers) containing up to 6 wt% single-wall carbon nanotubes has been determined as a function of temperature up to 340 °C. After removal of the processing water during the first heating cycle, the conductance in subsequent heating cycles increases as a function of carbon nanotube content and temperature from 9.75 × 10−4 to 1.87 × 10−3 S m−1 in the composites containing 0 and 0.2 wt% carbon nanotubes, respectively, at 290 °C. By comparison, the electrical conductance of potassium inorganic polymer composites containing graphite was generally lower. The conductance activation energies of the carbon nanotube and graphite composites were similar, and decreased from about 55 to 5 kJ mole−1 with increasing carbon content. The tensile strengths of carbon nanotube and graphite-containing potassium geopolymer composites, determined by the Brazil method on 10–12 replicates, were about 2 MPa, and showed little change with increasing carbon nanotube content up to 0.3 wt%. By contrast, the tensile strengths of an analogous set of sodium composites were up to four times greater, possibly reflecting the necessity for less processing water in the synthesis of the sodium samples.


Carbon Nanotubes Compressive Strength Geopolymer Spark Plasma Sinter Silicate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Thomas Borrmann and Sigmar Roth for kindly supplying the high-quality SWCNTs, to David Flynn for assistance with the electron microscopy, to Ross Fletcher for assistance with the strength measurements and to Jeremie Barrel for advice on the electrical measurements. This work was supported by financial assistance from the MacDiarmid Institute for Advanced Materials and Nanotechnology.


  1. 1.
    Davidovits J (1991) J Therm Anal 37:1633CrossRefGoogle Scholar
  2. 2.
    Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2:309CrossRefGoogle Scholar
  3. 3.
    Porte A, Jazet M (2008) Fr. Patent 02904677/Fr-A1Google Scholar
  4. 4.
    Davidovits J (2008) Institut Géopolymère, St. Quentin, FranceGoogle Scholar
  5. 5.
    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Nature 382:54CrossRefGoogle Scholar
  6. 6.
    Sun Y, Miyasato T, Kirimoto K, Kusunoki M (2005) Appl Phys Lett 86:223108CrossRefGoogle Scholar
  7. 7.
    Quin C, Shi X, Bai SQ, Chen LD, Wang LJ (2006) Mater Sci Eng A 420:208CrossRefGoogle Scholar
  8. 8.
    Astorga HR, Mendoza D (2005) Opt Mater 27:1228CrossRefGoogle Scholar
  9. 9.
    Gupta S, Patel RJ, Smith N, Giedd RE, Hui D (2007) Diam Relat Mater 16:236CrossRefGoogle Scholar
  10. 10.
    Simsek Y, Ozyuzer L, Tugrul Seyhan A, Tanoglu M, Schulte K (2007) J Mater Sci 42:9689. doi: CrossRefGoogle Scholar
  11. 11.
    Eren San S, Yerli Y, Okutan M, Yilmaz F, Gunaydin O, Hames Y (2007) Mater Sci Eng B 138:284CrossRefGoogle Scholar
  12. 12.
    Jiang L, Gao L (2006) J Am Ceram Soc 89:156CrossRefGoogle Scholar
  13. 13.
    Guo S, Sivakumar R, Kitazawa H, Kagawa Y (2007) J Am Ceram Soc 90:1667CrossRefGoogle Scholar
  14. 14.
    Shi S-L, Liang J (2006) J Am Ceram Soc 89:3533CrossRefGoogle Scholar
  15. 15.
    Zhao Q, Buongiorno M, Bernholc J (2002) Phys Rev B 65:144105CrossRefGoogle Scholar
  16. 16.
    Wei C, Cho K, Srivastava D (2003) Phys Rev B 67:115407CrossRefGoogle Scholar
  17. 17.
    Nochaiya T, Tolkidtikul P, Singjai P, Chaipanich A (2008) Adv Mater Res 55–57:549CrossRefGoogle Scholar
  18. 18.
    Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Nature Mater 2:38CrossRefGoogle Scholar
  19. 19.
    Kerber MK, Wereszczak AA, Jenkins MG (1998) Fracture strength. Marcel Dekker, NY, p 147Google Scholar
  20. 20.
    Primak W, Fuchs LH (1956) Phys Rev 103:541CrossRefGoogle Scholar
  21. 21.
    Primak W (1956) Phys Rev 103:544CrossRefGoogle Scholar
  22. 22.
    Hérold C, Hérold A, Lagrange P (2004) Solid State Sci 6:125CrossRefGoogle Scholar
  23. 23.
    Maniwa Y, Matsuda K, Kyakuno H, Ogasawara S, Hibi T, Kadowaki H, Suzuki S, Achiba Y, Kataura H (2007) Nature Mater 6:135CrossRefGoogle Scholar
  24. 24.
    Karpilovskii LP, Letskaya NV (1978) Steklo Keram 9:29Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations