Journal of Materials Science

, Volume 44, Issue 11, pp 2820–2827 | Cite as

Synthesis and characterization of anodized titanium-oxide nanotube arrays

  • Michael Z. HuEmail author
  • Peng Lai
  • M. S. Bhuiyan
  • Costas Tsouris
  • Baohua Gu
  • M. Parans Paranthaman
  • Jorge Gabitto
  • Latoya Harrison


Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.


TiO2 Rutile Anatase Phase Water Splitting Rutile Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Department of Energy, Office of Basic Energy Sciences, Department of Materials Science and Engineering Program and by the Laboratory Directed Research and Development (LDRD) program of ORNL. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy, under contract no. DE-AC05-00OR22725.


  1. 1.
    Grimes CA (2007) J Mater Chem 17:1451CrossRefGoogle Scholar
  2. 2.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energ Mater Sol Cells 90:2011CrossRefGoogle Scholar
  3. 3.
    Bolton JR (1996) Sol Energy 57:37CrossRefGoogle Scholar
  4. 4.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  5. 5.
    Glasscock JA, Barnes PRF, Plumb IC, Bendavid A, Martin PJ (2006). In: Vayssieres L (ed) Solar hydrogen and nanotechnology. Proceedings of the SPIE, vol 6340, pp 63400Google Scholar
  6. 6.
    Torres RG, Gemma L, Torbjörn LJ, Granqvist C-G, Lindquist SE (2004) J Phys Chem B 108(19):5995CrossRefGoogle Scholar
  7. 7.
    Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243CrossRefGoogle Scholar
  8. 8.
    Lin C-L, Chien S-H, Chao J-H, Sheu C-Y, Huang Y-J, Tsai C-H (2002) Catal Lett 80:153CrossRefGoogle Scholar
  9. 9.
    Park JH, Park OO, Kim S (2006) Appl Phys Lett 89:163106CrossRefGoogle Scholar
  10. 10.
    Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) J Mater Res 18:156CrossRefGoogle Scholar
  11. 11.
    Varghese OK, Mor GK, Grimes CA, Paulose M (2004) J Nanosci Nanotechnol 4:733CrossRefGoogle Scholar
  12. 12.
    Mor GK, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19:628CrossRefGoogle Scholar
  13. 13.
    Kasuga T, Hiramatsu M, Hirano M, Hoson A (1997) J Mater Res 12:607CrossRefGoogle Scholar
  14. 14.
    Dagan G, Tomkiewicz M (1993) J Phys Chem 97:12651CrossRefGoogle Scholar
  15. 15.
    Yang BC, Uchida M, Kim HM, Zhang XD, Kokubo T (2004) Biomaterials 25:1003CrossRefGoogle Scholar
  16. 16.
    Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) Med Eng Phys 23:329CrossRefGoogle Scholar
  17. 17.
    Gong D, Grimes CA, Varghese OK, Dickey EC (2001) J Mater Res 16:3331CrossRefGoogle Scholar
  18. 18.
    Beranek R, Hildebrand H, Schmuki P (2003) Electrochem Solid State Lett 6:B12CrossRefGoogle Scholar
  19. 19.
    Ruan CM, Wang W, Gu B (2006) Anal Chim Acta 576:114CrossRefGoogle Scholar
  20. 20.
    Chen X, Mao SS (2007) Chem Rev 107:2891CrossRefGoogle Scholar
  21. 21.
    Giolli C, Borgioli F, Credi A, Di Fabio A, Fossati A, Miranda MM, Parmeggiani S, Rizzi G, Scrivani A, Troglio S, Tolstoguzov A, Zoppi A, Bardi U (2007) Surf Coat Technol 202:13CrossRefGoogle Scholar
  22. 22.
    Orendorz A, Brodyanski A, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Surf Sci 601:4390CrossRefGoogle Scholar
  23. 23.
    Serpone N, Pelizzetti E (1989) Photocatalysis fundamentals and applications. Wiley & Sons, New YorkGoogle Scholar
  24. 24.
    Schiavello M (ed) (1988) Photocatalysis and environment trends and applications. Kluwer Academic, DordrechtGoogle Scholar
  25. 25.
    Thomas AG, Flavell WR, Mallick AK, Kumarasinghe AR, Tsoutsou D, Khan N, Chatwin C, Rayner S, Smith GC, Stockbauer RL, Warren S, Johal TK, Patel S, Holland D, Taleb A, Wiame F (2007) Phys Rev B 75(1–12):035105CrossRefGoogle Scholar
  26. 26.
    Sciafani A, Herrmann JM (1996) J Phys Chem 100:13655CrossRefGoogle Scholar
  27. 27.
    Chuan X-Y, Lu AH, Chen J, Li N, Guo YJ (2008) Mineral Petrol 93:143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Z. Hu
    • 1
    Email author
  • Peng Lai
    • 1
  • M. S. Bhuiyan
    • 1
  • Costas Tsouris
    • 1
  • Baohua Gu
    • 1
  • M. Parans Paranthaman
    • 1
  • Jorge Gabitto
    • 2
  • Latoya Harrison
    • 2
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Chemical Engineering DepartmentPrairie View A and M UniversityPrairie ViewUSA

Personalised recommendations