Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2162–2166 | Cite as

Improved magnetoelectric properties of piezoelectric–magnetostrictive nanocomposites synthesized using high-pressure compaction technique

  • Vishwas Bedekar
  • Narayan Poudyal
  • Chuan-bing Rong
  • J. Ping Liu
  • Choong-Un Kim
  • Shashank PriyaEmail author
Letter

Introduction

Magnetoelectric (ME) effect results in polarization of material with applied magnetic field and magnetic field induction with an applied electric field. ME composites with particulate structure show lower magnitude of ME coefficient as compared to that of laminate composites [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However, the advantages of particulate composites are simpler and cheaper synthesis technique, availability of wide range of compositions, scalability, and presence of both direct and converse ME effect. Thus, there has been continuous emphasis on enhancing the magnitude of particulate composites [11, 12]. In this letter, we report the properties of particulate composites synthesized using: (1) high-pressure compaction sintering technique and (2) conventional technique. The results clearly show that high-pressure sintering technique results in improved ME coefficient. We also study the effect of ratio of piezoelectric and magnetostrictive phase in the core-shell...

Keywords

NiFe2O4 Nickel Ferrite Benzyl Ether Cold Isostatic Pressure Iron Pentacarbonyl 

Notes

Acknowledegement

The authors gratefully acknowledge the financial support from Army Research Office.

References

  1. 1.
    Suchetelene JV (1972) Philips Res Rep 27:28Google Scholar
  2. 2.
    Harshe GR (1991) Magnetoelectric effect in piezoelectric–magnetostrictive composite. Ph.D. Dissertation, Pennsylvania State University, University Park, PAGoogle Scholar
  3. 3.
    Srinivasan G, Rasmussen E, Levin B, Hayes R (2002) Phys Rev B 65:134402CrossRefGoogle Scholar
  4. 4.
    Lalestin U, Padubnaya N, Srinivasan G, Devreugd CP (2004) Appl Phys A Mater Sci Process 78(1):33CrossRefGoogle Scholar
  5. 5.
    Dong SX, Zhai J, Li JF, Viehland D (2006) J Appl Phys 88:082907Google Scholar
  6. 6.
    Dong SX, Li JF, Viehland D (2003) IEEE Trans Ultrason Ferroelectr Freq Control 50:1253CrossRefGoogle Scholar
  7. 7.
    Dong SX, Li JF, Viehland D (2004) J Appl Phys 96:3382CrossRefGoogle Scholar
  8. 8.
    Dong SX, Cheng J, Li JF, Viehland D (2003) Appl Phys Lett 83:4812CrossRefGoogle Scholar
  9. 9.
    Dong SX, Li JF, Viehland D (2004) Appl Phys Lett 85:3534CrossRefGoogle Scholar
  10. 10.
    Ryu J, Priya S, Uchino K (2002) J Electroceram 8:107CrossRefGoogle Scholar
  11. 11.
    Islam RA, Priya S (2008) J Mater Sci 43:3560. doi: https://doi.org/10.1007/s10853-008-2562-9 CrossRefGoogle Scholar
  12. 12.
    Islam RA, Viehland D, Priya S (2008) J Mater Sci Lett 43:1497CrossRefGoogle Scholar
  13. 13.
    Islam R, Jiang J, Bai F, Viehland D, Priya S (2007) Appl Phys Lett 9:162905CrossRefGoogle Scholar
  14. 14.
    Islam R, Rong C, Liu JP, Priya S (2008) J Mater Sci Lett 43:6337CrossRefGoogle Scholar
  15. 15.
    Grössinger R, Duong GV, Sato-Turtelli R (2008) J Magn Magn Mater 320:1972CrossRefGoogle Scholar
  16. 16.
    Islam RA, Bedekar V, Poudyal N, Liu JP, Priya S (2008) J Appl Phys 104:104111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vishwas Bedekar
    • 1
  • Narayan Poudyal
    • 2
  • Chuan-bing Rong
    • 2
  • J. Ping Liu
    • 2
  • Choong-Un Kim
    • 1
  • Shashank Priya
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringUT ArlingtonArlingtonUSA
  2. 2.Department of PhysicsUT ArlingtonArlingtonUSA
  3. 3.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations