Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2167–2170 | Cite as

A new method to experimentally determine the thermal expansion coefficient, Poisson’s ratio and Young’s modulus of thin films

  • E. ÇetinörgüEmail author
Letter

The objective of this letter is to present a novel procedure to determine the thermal expansion coefficient, the Poisson’s ratio, and the Young’s modulus of a thin film deposited only on one substrate. The internal film stress (σf), thermal expansion coefficient (CTE, αf), Poisson’s ratio (νf), and Young’s modulus (Ef) of metal oxide films are very important in optical devices. These parameters are affected by the deposition method and deposition conditions, which could have a significant impact on the device applicability and reliability [1]. In addition, the mechanical properties and the internal stress of thin films differ significantly from those of bulk materials due to the effects of interfaces, microstructure, and underlying substrates. Hence, when there is a need to know αf, νf, and Efof deposited films, it is necessary to determine them directly on the film, a process generally involving the measurement of the internal film stress, which may be so high that in some cases the...

Keywords

Thermal Expansion Coefficient Niobium Oxide Intrinsic Stress Tantalum Oxide Film Stress 

Notes

Acknowledgement

This work was performed in the Engineering Physics Department at Ecole Polytechnique of Montreal, Canada. The author would like to thank Prof. S. Goldsmith and Prof. R.L Boxman for a critical reading of the manuscript and helpful discussions.

References

  1. 1.
    Vinci RP, Vlassak JJ (1996) Annu Rev Mater Sci 26:431CrossRefGoogle Scholar
  2. 2.
    Lee CC, Tien CL et al (2001) Rev Sci Instrum 72(4):2128CrossRefGoogle Scholar
  3. 3.
    Thielsch R, Gatto A et al (2002) Appl Optics 41(16):3211CrossRefGoogle Scholar
  4. 4.
    Hurley DC, Shen K, Jennett NM, Turner JA (2003) J Appl Phys 94(4):2347CrossRefGoogle Scholar
  5. 5.
    Hodge TC, Bidstrup-Allen SA et al (1997) IEEE Trans Compon Packag Manuf Technol A 20(2):241CrossRefGoogle Scholar
  6. 6.
    Tien CL, Lee CC et al (2001) Opt Commun 198:325CrossRefGoogle Scholar
  7. 7.
    Thurn J, Hughey MP (2004) J Appl Phys 95(12):7892CrossRefGoogle Scholar
  8. 8.
    Bunshah RF (2001) Handbook of hard coatings. Noyes Publications, NY, p 248Google Scholar
  9. 9.
    Arnold M, Boccaccini AR et al (1996) J Mater Sci 31:1643. doi: https://doi.org/10.1007/BF00357876 CrossRefGoogle Scholar
  10. 10.
    Choosuwan H, Guo R et al (2002) J Appl Phys 91(8):5051CrossRefGoogle Scholar
  11. 11.
    Chen TC, Chu CJ et al (2007) J Appl Phys 101:043513CrossRefGoogle Scholar
  12. 12.
    Moldovan M, Weyant CM et al (2004) J Therm Spray Tech 13(1):51CrossRefGoogle Scholar
  13. 13.
    Weyant CM, Faber KT et al (2005) J Am Ceram Soc 88(8):2169CrossRefGoogle Scholar
  14. 14.
    Chudoba T, Schwarzer N et al (2000) Surf Coat Technol 127:9CrossRefGoogle Scholar
  15. 15.
    Wu S, Chan HM, Harmer MP (2006) J Mater Sci 41:689. doi: https://doi.org/10.1007/s10853-006-6487-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Engineering PhysicsEcole Polytechnique of MontrealMontrealCanada

Personalised recommendations