Journal of Materials Science

, Volume 44, Issue 11, pp 2765–2773 | Cite as

Synthesis, characterization, and photochromic behaviors of polythiophene derivatives in the solid state

  • Bing-zhu Zhang
  • Xiong-yan ZhaoEmail author


Novel polythiophene derivatives with azobenzene chromophore side chains, poly[3-(6-((4-phenylazo)phenoxyl)hexyl)thienylacetate] (PATh-6), and the copolymers of 3-(6-((4-phenylazo)phenoxyl)hexyl)thienylacetate with 3-alkylthiophenes including 3-hexylthiophene and 3-dodecylthiophene (COP-66 and COP-612) were synthesized. The structure and the thermal property of these polythiophene derivatives were characterized by NMR, FT-IR, UV–vis, XRD, GPC, MDSC, and TGA. The differences in photochromic features and thermochromic behaviors between homopolymer and copolymers have been comparatively studied. The photochemical control of photoluminescence property was achieved with homopolymer PATh-6 both in solution and in the solid state. However, this photo-induced effect becomes less prominent for copolymers COP-66 and COP-612 due to the lower content of azobenzene chromophore in the side chain of copolymers. The photo-induced photochromic feature of homopolymer PATh-6 might be promising for the development of novel field-responsive materials.


Azobenzene Polythiophene Thiophene Ring Modify Differential Scanning Calorimetry Photochromic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project was sponsored by the Scientific Research Key Foundation for Returned Overseas Chinese Scholars, Ministry of Personnel of the People’s Republic of China. This project was also supported by the Natural Science Foundation of Hebei Province (B2007000613), and by the Research Fund of Hebei University of Science and Technology.


  1. 1.
    Pron A, Rannou P (2002) Prog Polym Sci 27:135CrossRefGoogle Scholar
  2. 2.
    Saxena V, Malhotra BD (2003) Current Appl Phys 3:293CrossRefGoogle Scholar
  3. 3.
    Friend RH (2001) Pure Appl Chem 73:425CrossRefGoogle Scholar
  4. 4.
    Woo CH, Thompson BC, Kim BJ, Toney MF, Fréchet JMJ (2008) J Am Chem Soc 130:16324CrossRefGoogle Scholar
  5. 5.
    Osaka I, McCullough RD (2008) Acc Chem Res 41:1202CrossRefGoogle Scholar
  6. 6.
    Osaka I, Sauvé G, Zhang R, Kowalewski T, McCullough RD (2007) Adv Mater 19:4160CrossRefGoogle Scholar
  7. 7.
    Sauve G, McCullough RD (2007) Adv Mater 19:1822CrossRefGoogle Scholar
  8. 8.
    Reeves BD, Unur E, Ananthakrishnan N, Reynolds JR (2007) Macromolecules 40:5344CrossRefGoogle Scholar
  9. 9.
    Zagorska M, Kulszewicz-Bajer I, Pron A, Sukiennik J, Raimond P, Kajzar F, Attias AJ (1999) Synth Met 102:1141CrossRefGoogle Scholar
  10. 10.
    Mochizuki H, Nabeshima Y, Kitsunai T, Kanazawa A, Shiono T, Ikeda T, Hiyama T, Maruyama T, Yamamoto T, Koide N (1999) J Mater Chem 9:2215CrossRefGoogle Scholar
  11. 11.
    Ofer D, Crooks DM, Wrighton MS (1990) J Am Chem Soc 112:7869CrossRefGoogle Scholar
  12. 12.
    Thobie-Gautier C, Gorgues A, Jubault M, Roncali J (1993) Macromolecules 26:4094CrossRefGoogle Scholar
  13. 13.
    Thobie-Gautier C, Bouligand Y, Gorgues A, Jubault M, Roncali J (1994) Adv Mater 6:138CrossRefGoogle Scholar
  14. 14.
    Yassar A, Moustrou C, Korri Youssoufi H, Samat A, Guglielmetti R, Garnier F (1995) Macromolecules 28:4548CrossRefGoogle Scholar
  15. 15.
    Zagorska M, Kulszewicz-Bajer I, Pron A, Sukiennik J (1998) Macromolecules 31:9146CrossRefGoogle Scholar
  16. 16.
    Levesque I, Leclerc M (1997) Synth Met 84:203CrossRefGoogle Scholar
  17. 17.
    Levesque I, Leclerc M (1997) Macromolecules 30:4347CrossRefGoogle Scholar
  18. 18.
    Zhao XY (2005) J Mater Sci 40:3423. doi: CrossRefGoogle Scholar
  19. 19.
    Buffeteau T, Lagygne LF, Pezolet M, Sourisseau C (1998) Macromolecules 31:7312CrossRefGoogle Scholar
  20. 20.
    Berg RH, Hvilsted S, Ramanujam PS (1996) Nature 383:506CrossRefGoogle Scholar
  21. 21.
    Maxein G, Zentel R (1995) Macromolecules 28:8438CrossRefGoogle Scholar
  22. 22.
    Natansohn N, Rochon P (1999) Adv Mater 11:1387CrossRefGoogle Scholar
  23. 23.
    Chittibabu KG, Li L, Kamath M, Kumar J, Tripathy SK (1994) Chem Mater 6:475CrossRefGoogle Scholar
  24. 24.
    Yamamoto T, Komarudin D, Arai M, Lee BL, Suganuma H, Asakawa N, Inoue Y, Kubota K, Matsuda H (1998) J Am Chem Soc 120:2047CrossRefGoogle Scholar
  25. 25.
    Barbarella G, Bongini A, Zambianchi M (1994) Macromolecules 27:3039CrossRefGoogle Scholar
  26. 26.
    McCullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) J Org Chem 58:904CrossRefGoogle Scholar
  27. 27.
    Chen TA, Wu X, Rieke RD (1995) J Am Chem Soc 117:233CrossRefGoogle Scholar
  28. 28.
    Miller RL, Boyer RF (1984) J Polym Sci Polym Phys Ed 22:2021CrossRefGoogle Scholar
  29. 29.
    Chen SA, Ni JM (1992) Macromolecules 25:6081CrossRefGoogle Scholar
  30. 30.
    Levesque I, Leclerc M (1996) Chem Mater 8:2843CrossRefGoogle Scholar
  31. 31.
    Rughooputh SDDV, Bloor D, Phillips D, Movaghar B (1987) Phys Rev B 35:8103CrossRefGoogle Scholar
  32. 32.
    Linton JR, Frank CW, Rughooputh SDDV (1989) Synth Met 28:C399CrossRefGoogle Scholar
  33. 33.
    Yoshino K, Nakajima S, Onoda M, Sugimoto R (1989) Synth Met 28:C349CrossRefGoogle Scholar
  34. 34.
    Leelerc M, Faid K (1997) Adv Mater 9:1087CrossRefGoogle Scholar
  35. 35.
    Roux C, Bergeron JY, Faid K (1993) Makromol Chem 194:869CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.College of Material Science & EngineeringHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China

Personalised recommendations