Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2759–2764 | Cite as

The interfacial characteristic of SiCp/AZ91 magnesium matrix composites fabricated by stir casting

  • X. J. WangEmail author
  • X. S. Hu
  • K. Wu
  • M. Y. Zheng
  • L. Zheng
  • Q. J. Zhai
Article

Abstract

The particle/matrix interfaces in SiCp/AZ91 composite fabricated by stir casting were investigated using transmission electron microscope (TEM) equipped with ultra-thin window energy dispersive X-ray analysis (EDAX) system. Chemical reactions indeed occurred at the interfaces. According to EDAX results, the interfacial reaction products are considered to contain Al4C3, MgO, and Mg2Si phases. The interfaces can be classified into three types (interfaces I, II, and III) according to morphological features of the interfaces: (1) for interface I, interfacial reaction products were in direct contact with the surface of SiCp; (2) for interface II, interfacial reaction products were not in direct contact with the surface of SiCp; (3) for interface III, interfacial reaction products were not observed at the interfaces, i.e., interface III was simply formed by the two surfaces of SiCp and matrix. Mg17Al12 and Al8Mn5 precipitate phases heterogeneously nucleated at the particle/matrix interfaces.

Keywords

Interfacial Reaction Matrix Alloy MgAl2O4 AZ91D Alloy AZ91D Magnesium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Luo A (1995) Metall Mater Trans A 26:2445–2455CrossRefGoogle Scholar
  2. 2.
    Palash P, Srivastava VC, De PK, Sahoo KL (2007) Mater Sci Eng A 460–461:357–364CrossRefGoogle Scholar
  3. 3.
    Hassan SF, Gupta M, Alloys J (2002) Compd 335:L10–L15CrossRefGoogle Scholar
  4. 4.
    Wang XJ, Wu K, Huang WX, Zhang HF, Zheng MY, Peng DL (2007) Compos Sci Technol 67:2253–2260CrossRefGoogle Scholar
  5. 5.
    Mordike BL, Lukac P (2001) Surf Interface Anal 31:682–691CrossRefGoogle Scholar
  6. 6.
    Zheng MY, Wu K, Yao CK (2001) Mater Lett 47:118–124CrossRefGoogle Scholar
  7. 7.
    Braszcaynska KN, Liynska L, Zyska A, Baliga W (2003) Mater Chem Phys 81:326–328CrossRefGoogle Scholar
  8. 8.
    Cai Y, Shen GJ, Su HQ (1997) Scripta Mater 37:737–742CrossRefGoogle Scholar
  9. 9.
    Cai Y, Tan MJ, Shen GJ, Su HQ (2000) Mater Sci Eng A 282:232–239CrossRefGoogle Scholar
  10. 10.
    Bochenek A, Braszcaynska KN (2000) Mater Sci Eng A 290:122–127CrossRefGoogle Scholar
  11. 11.
    Epicier T, Bosselet F, Viala JV (1993) Interface Sci 1:213–221Google Scholar
  12. 12.
    Wang Y, Weatherly GC, Mccome DW, Lloyd DJ (1997) J Microsc 185:292–302CrossRefGoogle Scholar
  13. 13.
    Lo J, Carpenter JC, Charest M (1993) Proceedings of the 1996 125th TMS annual meeting, pp 29–39Google Scholar
  14. 14.
    Saravavana RA, Surappa MK (2000) Mater Sci Eng A 276:108–116CrossRefGoogle Scholar
  15. 15.
    Tham LM, Gupta M, Cheng L (2003) Mater Sci Eng A 354:369–376CrossRefGoogle Scholar
  16. 16.
    Tham LM, Gupta M, Cheng L (2000) Acta Mater 49:3243–3253CrossRefGoogle Scholar
  17. 17.
    Lloyd DJ (1994) Int Mater Rev 39:1–23CrossRefGoogle Scholar
  18. 18.
    Gui MC, Han JM, Li PY (2004) Mater Sci Technol 20:765–771CrossRefGoogle Scholar
  19. 19.
    Shi Z, Ochiai S, Gu M, Hojo M, Lee JC (2002) Appl Phys A 74:97–104CrossRefGoogle Scholar
  20. 20.
    Shi ZL, Yang JM, Lee JC, Zhang D, Lee HI, Wu RJ (2001) Mater Sci Eng A 303:46–53CrossRefGoogle Scholar
  21. 21.
    Asthana R (1998) J Mater Sci 33:1959–1980. doi:  https://doi.org/10.1023/A:1004334228105 CrossRefGoogle Scholar
  22. 22.
    Kaneda H, Choh T (1997) J Mater Sci 32:47–56. doi:  https://doi.org/10.1023/A:1018558612135 CrossRefGoogle Scholar
  23. 23.
    Rodriguez-Reyes M, Pech-Canul MI, Rendon-Angeles JC, Lopez-Cuevas J (2006) Compos Sci Technol 66:1056–1062CrossRefGoogle Scholar
  24. 24.
    Asthana R (1998) J Mater Sci 33:1679–1698. doi:  https://doi.org/10.1023/A:1004308027679 CrossRefGoogle Scholar
  25. 25.
    Cabibbo M, Evangelista E, Spigarelli S, TalianKer M (2001) Mater Lett 49:43–46CrossRefGoogle Scholar
  26. 26.
    Ye HZ, Liu Y (2006) J Alloys Compd 419:54–60CrossRefGoogle Scholar
  27. 27.
    Inem B, Pollard G (1993) J Mater Sci 28:4427–4434. doi:  https://doi.org/10.1007/BF01154952 CrossRefGoogle Scholar
  28. 28.
    Inem B (1995) J Mater Sci 30:5763–5769. doi:  https://doi.org/10.1007/BF00356718 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. J. Wang
    • 1
    • 2
    • 3
    Email author
  • X. S. Hu
    • 2
  • K. Wu
    • 2
  • M. Y. Zheng
    • 2
  • L. Zheng
    • 1
  • Q. J. Zhai
    • 3
  1. 1.Baosteel Structure Steel Technology United Research Center, Baoshan Iron & Steel Co. LtdShanghaiPeople’s Republic of China
  2. 2.Harbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.Shanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations