Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2752–2758 | Cite as

Relation between structure and mechanical properties (elastoplastic and fracture behavior) of hybrid organic–inorganic coating

  • A. Ferchichi
  • S. Calas-EtienneEmail author
  • M. Smaïhi
  • G. Prévot
  • P. Solignac
  • P. Etienne
Article

Abstract

The mechanical properties of various inorganic organic films were studied and compared in order to investigate the relation between structural modifications and the mechanical behavior. Films were prepared by a sol–gel process and spin-coated on silicon substrate. The organic–inorganic hybrid is composed of a mixture of colloidal silica and organosiloxane precursors. The functionality of the organosiloxane and the nature of its organic part have been modified to obtain a structural change. Mechanical properties were studied using nanoindentation. Analysis of the strength evolution as a function of depth of indentation shows the layer hardness and elastic modulus. Moreover, coating and interface toughness and residual stresses were determined by a time resolved study of energy dissipation during indentation. The structural changes were determined using liquid and solid 29Si NMR spectroscopy. Quantity of partially and fully condensed species in the deposited sol and final solid are discussed in relation to the mechanical properties.

Keywords

Residual Stress Indentation Depth Colloidal Silica MTES Siloxane Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Frings S, Meinema HA, Van Nostrum CF, Vander-Linde R (1998) Prog Org Coat 33:126CrossRefGoogle Scholar
  2. 2.
    Etienne P, Phalippou J, Sempere R (1998) J Mater Sci 33:3999. doi: https://doi.org/10.1023/A:1004609115560 CrossRefGoogle Scholar
  3. 3.
    Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Science 286:945CrossRefGoogle Scholar
  4. 4.
    Lee TW, Park O, Yoon J, Kim JJ (2001) Adv Mater 3:211CrossRefGoogle Scholar
  5. 5.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  6. 6.
    Yoshida M, Prasad PN (1996) Chem Mater 8:235CrossRefGoogle Scholar
  7. 7.
    Biteau J, Chaput F, Lahlil K, Boilot JP, Tsivgoulis GM, Lehn JM, Darracq B, Marois C, Levy Y (1998) Chem Mater 10:1945CrossRefGoogle Scholar
  8. 8.
    Etienne-Calas S, Duri A, Etienne P (2004) J Non-Cryst Solids 344:60CrossRefGoogle Scholar
  9. 9.
    Malzbender J, De With G (2000) J Non-Cryst Solids 265:51CrossRefGoogle Scholar
  10. 10.
    Ferchichi AK, Etienne-Calas S, Etienne P (2008) J Non-Cryst Solids 354:712CrossRefGoogle Scholar
  11. 11.
    Glaser RH, Wilkes GL (1989) J Non-Cryst Solids 11:373Google Scholar
  12. 12.
    Brunet F (1998) J Non-Cryst Solids 231:58CrossRefGoogle Scholar
  13. 13.
    Loubet J, Georges JM, Marchesini O, Meille G (1984) J Tribol 106:43CrossRefGoogle Scholar
  14. 14.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  15. 15.
    Broek D (1997) Elementary engineering fracture and mechanics. Kluwer Academic, DordrechtGoogle Scholar
  16. 16.
    Marshall DB, Lawn BR (1977) J Am Ceram Soc 60:86CrossRefGoogle Scholar
  17. 17.
    Rosenfeld LG, Ritter JE, Lardner TJ, Lin MR (1990) J Appl Phys 67:3291CrossRefGoogle Scholar
  18. 18.
    Hutchinson JW, Suo Z (1992) Adv Appl Mech 92:63Google Scholar
  19. 19.
    Lawn BR (1993) Fracture of brittle solids. Cambridge University Press, London, p 378CrossRefGoogle Scholar
  20. 20.
    Li X, Diao D, Bhushan B (1997) Acta Mater 45:4453CrossRefGoogle Scholar
  21. 21.
    Brinker CJ (1988) J Non-Cryst Solids 100:31CrossRefGoogle Scholar
  22. 22.
    Bissuel F (1996) Ph.D. thesis, University of Montpellier 2Google Scholar
  23. 23.
    Sugahara Y, Okada S, Kuroda K, Kato C (1992) J Non-Cryst Solids 13:925Google Scholar
  24. 24.
    Lux P, Brunet F, Virlet J, Cabane B (1996) Magn Reson Chem 34:100CrossRefGoogle Scholar
  25. 25.
    De Monredon S (2004) Ph.D. thesis, University Paris VIGoogle Scholar
  26. 26.
    Osterholz FD, Pohl ER (1992) Silanes and other coupling agents. Utrecht, p 119Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Ferchichi
    • 1
  • S. Calas-Etienne
    • 1
    Email author
  • M. Smaïhi
    • 2
  • G. Prévot
    • 3
  • P. Solignac
    • 1
  • P. Etienne
    • 1
  1. 1.Groupe d’Etude des SemiconducteursUniversité Montpellier 2MontpellierFrance
  2. 2.Institut Européen des MembranesCNRSMontpellierFrance
  3. 3.LCVN Université Montpellier 2MontpellierFrance

Personalised recommendations