Advertisement

Journal of Materials Science

, Volume 44, Issue 11, pp 2743–2751 | Cite as

Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation

  • Benjaram M. ReddyEmail author
  • Gunugunuri K. Reddy
  • Ibram Ganesh
  • Jose M. F. Ferreira
Article

Abstract

Various CeO2MxOy (MxOy = SiO2, TiO2, ZrO2, and Al2O3) mixed oxides were prepared by microwave induced solution combustion method and analyzed by different complimentary techniques, namely, X-ray diffraction (XRD), Raman spectroscopic (RS), UVVis diffuse reflectance spectroscopy (UV-DRS), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG-DTA), and BET surface area. XRD analyses revealed that CeO2SiO2 and CeO2TiO2 mixed oxides are in slightly amorphous form and exhibit only broad diffraction lines due to cubic fluorite structure of ceria. XRD lines due to the formation of cubic Ce0.5Zr0.5O2 were observed in the case of CeO2ZrO2 sample. RS results suggested defective structure of the mixed oxides resulting in the formation of oxygen vacancies. The UV-DRS measurements provided valid information about Ce4+ ← O2− and Ce3+ ← O2− charge transfer transitions. XPS studies revealed the presence of cerium in both Ce3+ and Ce4+ oxidation states. The ceria–zirconia combination exhibited better oxygen storage capacity (OSC) and CO oxidation activity when compared to other samples. The significance of present synthesis method lays mostly on its simplicity, flexibility, and the easy control of different experimental factors.

Keywords

Ceria CeO2 Mixed Oxide Fluid Catalytic Crack Oxygen Storage Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

GKR thank UGC, New Delhi for senior research fellowship. The support of CICECO is also acknowledged.

References

  1. 1.
    Rao CNR (1994) Chemical approaches to the synthesis of inorganic materials. Wiley Eastern Limited, New DelhiGoogle Scholar
  2. 2.
    Fraigi LB, Lamas DG, de Reca NEW (2001) Mater Lett 47:2001CrossRefGoogle Scholar
  3. 3.
    Bhaduri S, Bhaduri SB, Zhou E (1998) J Mater Res 13:156CrossRefGoogle Scholar
  4. 4.
    Bhaduri S, Bhaduri SB, Prisbery KA (1999) J Mater Res 14:3571CrossRefGoogle Scholar
  5. 5.
    Venkatachari KR, Huang D, Ostrander SP, Schulze WA, Stangle GC (1995) J Mater Res 10:748CrossRefGoogle Scholar
  6. 6.
    Schafer J, Sigmund W, Roy S, Aldinger F (1997) J Mater Res 12:2518CrossRefGoogle Scholar
  7. 7.
    Garcia R, Hirata GA, Mckittrick J (2001) J Mater Res 16:1059CrossRefGoogle Scholar
  8. 8.
    Roy S, Sigmund W, Aldinger F (1999) J Mater Res 14:1524CrossRefGoogle Scholar
  9. 9.
    Yong-hua L, Rong L, Yi-Yi L (2001) J Alloys Compd 319:108CrossRefGoogle Scholar
  10. 10.
    Li L, Saita I, Saito K, Akiyama T (2002) Intermetallics 10:927CrossRefGoogle Scholar
  11. 11.
    Greca MC, Moraes C, Segadaes AM (2001) Appl Catal A Gen 216:267CrossRefGoogle Scholar
  12. 12.
    Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199CrossRefGoogle Scholar
  13. 13.
    Vasylkiv O, Sakka Y, Skorokhod VV (2007) J Eur Ceram Soc 27:585CrossRefGoogle Scholar
  14. 14.
    Vasylkiv O, Sakka Y (2005) Nano Lett 5:2598CrossRefGoogle Scholar
  15. 15.
    Mingos DMP, Whittaker AG (1996) In: van Eldik R, Hubbard CD (eds) Chemistry under extreme or non-classical conditions. Wiley, New York, p 479Google Scholar
  16. 16.
    Shao Z, Halle SA (2004) Nature 431:170CrossRefGoogle Scholar
  17. 17.
    Laosiripojana N, Assabumrungrat S (2005) Appl Catal B Envi 60:107CrossRefGoogle Scholar
  18. 18.
    Kharton VV, Kovalevsky AV, Viskup AP, Shaula AL, Figueiredo FM, Naumovich EN, Marques FMB (2003) Solid State Ionics 160:247CrossRefGoogle Scholar
  19. 19.
    Levy C, Guizard C, Julbe A (2004) Sep Purif Technol 32:327CrossRefGoogle Scholar
  20. 20.
    Yin X, Hong L, Liu Z-L (2006) Appl Catal A Gen 300:75CrossRefGoogle Scholar
  21. 21.
    Damyanova S, Bueno JMC (2003) Appl Catal A Gen 253:135CrossRefGoogle Scholar
  22. 22.
    Ozaki T, Masui T, Machida K-I, Adachi G-Y, Sakata T, Mori H (2000) Chem Mater 12:643CrossRefGoogle Scholar
  23. 23.
    Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A (2006) Catal Today 114:40CrossRefGoogle Scholar
  24. 24.
    Mishra VS, Mahajani VV, Joshi JB (1995) Ind Eng Chem Res 34:2CrossRefGoogle Scholar
  25. 25.
    Zafiris GS, Gorte RJ (1993) J Catal 139:561CrossRefGoogle Scholar
  26. 26.
    Jacobs G, Khalid S, Patterson PM, Sparks DE, Davis BH (2004) Appl Catal A Gen 268:255CrossRefGoogle Scholar
  27. 27.
    Montoya JA, Romero E, Gimon C, Del Angel P, Monzon A (2000) Catal Today 63:71CrossRefGoogle Scholar
  28. 28.
    Craciun R, Daniell W, Knozinger H (2002) Appl Catal A Gen 230:153CrossRefGoogle Scholar
  29. 29.
    Kawi S, Tang YP, Hidajat K, Yu LE (2005) J Metastable Nanocryst Mater 23:95CrossRefGoogle Scholar
  30. 30.
    Neylon MK, Castagnola MJ, Castagnola NB, Marshall ChL (2004) Catal Today 96:53CrossRefGoogle Scholar
  31. 31.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Briggs D, Seah MP (1990) Practical surface analysis: Auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MNGoogle Scholar
  34. 34.
    Chen Q, Shi Y, Chen J, Shi J (2005) J Mater Res 20:1409CrossRefGoogle Scholar
  35. 35.
    Fagherazzi G, Polizzi S, Bettinelli M, Speghini A (2000) J Mater Res 15:586CrossRefGoogle Scholar
  36. 36.
    Fumo DA, Morelli MR, Segadaes AM (1996) Mater Res Bull 31:1243CrossRefGoogle Scholar
  37. 37.
    Purohit RD, Sharma BP, Pillai KT, Tyagi AK (2001) Mater Res Bull 36:2711CrossRefGoogle Scholar
  38. 38.
    Patil KC, Aruna ST, Ekambaram S (1997) Curr Opin Solid State Mater Sci 2:158CrossRefGoogle Scholar
  39. 39.
    Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6CrossRefGoogle Scholar
  40. 40.
    Reddy BM, Reddy GK, Khan A, Ganesh I (2007) J Mater Sci 42:3557. doi: https://doi.org/10.1007/s10853-007-1560-7 CrossRefGoogle Scholar
  41. 41.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:5162CrossRefGoogle Scholar
  42. 42.
    Preuss A, Gruehn R (1994) J Solid State Chem 110:363CrossRefGoogle Scholar
  43. 43.
    Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249CrossRefGoogle Scholar
  44. 44.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025CrossRefGoogle Scholar
  45. 45.
    Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grunert W (2007) J Phys Chem C 111:10478CrossRefGoogle Scholar
  46. 46.
    Martinez-Arias A, Fernandez-Garcia M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) J Phys Chem B 104:4038CrossRefGoogle Scholar
  47. 47.
    Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964CrossRefGoogle Scholar
  48. 48.
    Lin X-M, Li L-P, Li G-S, Su W-H (2001) Mater Chem Phys 69:236CrossRefGoogle Scholar
  49. 49.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2002) J Phys Chem B 106:10964CrossRefGoogle Scholar
  50. 50.
    Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys ReV B 64:245407CrossRefGoogle Scholar
  51. 51.
    Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178CrossRefGoogle Scholar
  52. 52.
    McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435CrossRefGoogle Scholar
  53. 53.
    Wachs IE, Deo G (1991) J Phys Chem 95:5889Google Scholar
  54. 54.
    Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067CrossRefGoogle Scholar
  55. 55.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441CrossRefGoogle Scholar
  56. 56.
    Reddy BM, Bharali P, Saikia P, Park S-E, van den Berg MWE, Muhler M, Grunert W (2008) J Phys Chem C 112:11729CrossRefGoogle Scholar
  57. 57.
    Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369CrossRefGoogle Scholar
  58. 58.
    Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107CrossRefGoogle Scholar
  59. 59.
    Burroughs P, Hamnett A, Orchard A, Thornton G (1976) J Chem Soc Dalton Trans 1686Google Scholar
  60. 60.
    Pfau A, Schierbaum KD (1994) Surf Sci 321:71CrossRefGoogle Scholar
  61. 61.
    Barr TL, Fries CE, Cariati F, Bart JCJ, Giordano N (1983) J Chem Soc Dalton Trans 1825Google Scholar
  62. 62.
    Bensalem A, Bozon-Verduraz F, Delamar M, Bugli G (1995) Appl Catal A Gen 121:81CrossRefGoogle Scholar
  63. 63.
    Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21CrossRefGoogle Scholar
  64. 64.
    Biener J, Baumer M, Wang J, Madrix R (2000) J Surf Sci 450:12CrossRefGoogle Scholar
  65. 65.
    Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) J Electron Spectrosc Relat Phenom 88–91:951CrossRefGoogle Scholar
  66. 66.
    Reddy BM, Chowdhury B, Reddy EP, Fernandez A (2001) Appl Catal A Gen 213:279CrossRefGoogle Scholar
  67. 67.
    Wang S-P, Zheng X-C, Wang X-Y, Wang X-R, Zhang S-M, Yu L-H, Huang W-P, Wu S-H (2005) Catal Lett 105:163CrossRefGoogle Scholar
  68. 68.
    Reddy BM, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, Cartes CL, Rojas TC, Fernandez A (2006) J Phys Chem B 110:9140CrossRefGoogle Scholar
  69. 69.
    Reddy BM, Rao KN, Reddy GK, Khan A, Park S-E (2007) J Phys Chem B 111:18751CrossRefGoogle Scholar
  70. 70.
    Ozawa M, Loong CK (1999) Catal Today 50:329CrossRefGoogle Scholar
  71. 71.
    Reddy BM, Saikia P, Bharali P, Yamada Y, Kobayashi T, Muhler M, Grunert W (2008) J Phys Chem C 112:16393CrossRefGoogle Scholar
  72. 72.
    Reddy BM, Bharali P, Saikia P (2008) Catal Surv Asia 12:214CrossRefGoogle Scholar
  73. 73.
    Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) Catal Today 77:407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benjaram M. Reddy
    • 1
    Email author
  • Gunugunuri K. Reddy
    • 1
  • Ibram Ganesh
    • 2
  • Jose M. F. Ferreira
    • 3
  1. 1.Inorganic and Physical Chemistry DivisionIndian Institute of Chemical TechnologyHyderabadIndia
  2. 2.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia
  3. 3.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations