Journal of Materials Science

, Volume 44, Issue 11, pp 2736–2742 | Cite as

Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings

  • Tobias KönigerEmail author
  • Helmut Münstedt


The influence of the organic film agent polyvinylpyrrolidone (PVP) on the electrical conductivity of indium tin oxide (ITO) nanoparticle coatings on polyethyleneterephthalate films was investigated. The ITO/PVP nanocomposite coatings show a decrease of the specific resistance with increasing PVP content up to 40 vol.%, whereas for higher PVP contents the specific resistance increases. The lowest specific resistance of 6 Ω cm is almost 20 times lower than that of a pure ITO nanoparticle coating. Annealing at 200 °C leads to a further decrease of the specific resistance for all volume fractions of PVP. Specific resistances of 0.5 Ω cm could be achieved for PVP contents of 33–40 vol.%. In addition, the PVP has a strong influence on the electrical conductivity of ITO/PVP coatings under bending which was investigated using a specially constructed device for the application of various bending loads. The ITO/PVP nanocomposite films show a significant lower increase of the sheet resistance under oscillatory bending compared to pure ITO nanoparticle coatings. However, the transmission in the visible range of ITO/PVP nanocomposites decreases with increasing PVP content up to 40 vol.%.


Sheet Resistance Specific Resistance Nanocomposite Coating Shrinkage Force Lower Specific Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project was performed within the research training group “Disperse Systems for Electronic Applications” in cooperation with the Evonik Degussa GmbH. The authors want to thank the German Research Foundation for the financial support, the Evonik Degussa GmbH for providing the ITO nanoparticle dispersion and Mitsubishi Polyester Films for the PET films.


  1. 1.
    Ray S, Banerjee R, Basu N, Batabyal AK, Barua AK (1983) J Appl Phys 54:3497CrossRefGoogle Scholar
  2. 2.
    Hamberg I, Granqvist CG (1986) J Appl Phys 60(11):R123CrossRefGoogle Scholar
  3. 3.
    Al-Dahoudi N, Aegerter MA (2006) Thin Solid Films 502:193CrossRefGoogle Scholar
  4. 4.
    Ederth J, Heszler P, Hultåker A, Niklasson GA, Granqvist CG (2003) Thin Solid Films 445:199CrossRefGoogle Scholar
  5. 5.
    Goebbert C, Nonninger R, Aegerter MA, Schmidt H (1999) Thin Solid Films 351:79CrossRefGoogle Scholar
  6. 6.
    Al-Dahoudi N, Bisht H, Göbert C, Krajewski T, Aegerter MA (2001) Thin Solid Films 392:299CrossRefGoogle Scholar
  7. 7.
    Puetz J, Al-Dahoudi N, Aegerter MA (2004) Adv Eng Mater 6(9):733CrossRefGoogle Scholar
  8. 8.
    Puetz J, Aegerter MA (2008) Thin Solid Films 516(14):4495CrossRefGoogle Scholar
  9. 9.
    Königer T, Münstedt H (2008) J Soc Inform Display 16(4):559CrossRefGoogle Scholar
  10. 10.
    Yoshida M, Prasad PN (1996) Appl Optics 35(9):1500CrossRefGoogle Scholar
  11. 11.
    Zheng M-P, Jin Y-P, Jinin G-l, Gu M-Y (2000) J Mater Sci Lett 19:433CrossRefGoogle Scholar
  12. 12.
    Du T, Song H, Ilegbusi OJ (2007) J Mater Sci Eng C27:414CrossRefGoogle Scholar
  13. 13.
    Carotenuto G, Valente M, Scimue G, Valente T, Pepe G, Ruotolo A, Nicolais L (2006) J Mater Sci 41:5587. doi: CrossRefGoogle Scholar
  14. 14.
    Scheirs J, Biggers W, Then ETH, Billingham NC (1993) J Polym Sci B Polym Phys 31:287CrossRefGoogle Scholar
  15. 15.
    Königer T, Münstedt H (2008) Measure Sci Technol 19:055709Google Scholar
  16. 16.
    Sato T, Sato A, Arai T (1998) Colloid Surf A Physicochem Eng Aspect 142:117CrossRefGoogle Scholar
  17. 17.
    Gross M, Winnacker A, Wellmann PJ (2007) Thin Solid Films 515(24):8567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Polymer MaterialsErlangenGermany

Personalised recommendations