Journal of Materials Science

, Volume 44, Issue 10, pp 2674–2682 | Cite as

Effect of plasticization on the photodegradation of poly (para-methoxystyrene) films

  • Khalid E. Al AniEmail author
  • Muna A. Hawi


The influence of dibutyl phthalate, dioctyl phthalate, dimethyl terephthalate, diethyl terephthalate, and dioctyl terephthalate-plasticizers on poly (para-methoxy styrene) photodegradation was investigated by UV–vis, fluorescence, and FT-IR spectroscopic methods. The increase in irradiation time caused an increase in the absorption band of the polymer and an increase in the absorption of new band at longer wavelength, thus indicating a possibility of photodegradation of polymer films. The study on poly (para-methoxy styrene) photodegradation was also compared to varying phthalate and terephthalate plasticizers in order to provide an understanding of its photodegradation vis the presence of phthalates and terephthalates plasticizers. The decrease in the excimer fluorescence upon the increase in the time of exposure to UV-radiation provides an evidence for the degradation of polymeric chains through a chin scission processes. The increase in the photodegradation of the polymer increased with the increase in the bulkiness of added plasticizer molecule. IR-spectra of irradiated pure and blended polymer films indicated that the photodegradation of the polymer occurred, by the formation of new absorption bands, and the increase in the intensity of other bands.


Phthalate Chain Scission Dibutyl Phthalate Dioctyl Phthalate Excimer Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the financial support by the Hashemite University, and Abdul Hammed Showman Foundation. Thanks are also due to M. Anbitawy for all the help in this work and to Y. Al Haj for useful discussion. Thanks are also extended to A. Al-Kharabsheh for helping in linguistic and stylistic infelicities.


  1. 1.
    Kaczmark H (1995) Eur Polym J 31:1175CrossRefGoogle Scholar
  2. 2.
    Weir NA, Milkie TH (1980) Eur Polym J 16:141CrossRefGoogle Scholar
  3. 3.
    Ranby B, Rabek JF (1974) J Polym Sci Polym Chem Ed 12:273CrossRefGoogle Scholar
  4. 4.
    Dickens B, Marchal J (1984) Polym Degrad Stab 6:211CrossRefGoogle Scholar
  5. 5.
    Trinh DV, Linton RC, Vaughn JA, Finckenor MM, Van De Mark MR (1994) Polym Degrad Stab 46:325CrossRefGoogle Scholar
  6. 6.
    Kaczmarek H, Kaminska A, Swiatek M, Sanyal S (2000) Eur Polym J 36:1167CrossRefGoogle Scholar
  7. 7.
    Kowal J, Nowakowska M (1982) Polymer 23:281CrossRefGoogle Scholar
  8. 8.
    Subramanian K (2002) Eur Polym J 38:1167CrossRefGoogle Scholar
  9. 9.
    Tse KC, Ng FM, Yu KN (2006) Polym Degrad Stab 91:2380CrossRefGoogle Scholar
  10. 10.
    Solomon DJ (1982) J Macromol Sci Chem A 17:337CrossRefGoogle Scholar
  11. 11.
    Weir NA (1986) Polym Photochem 7:129CrossRefGoogle Scholar
  12. 12.
    Rabek JF, Ranby B (1974) J Polym Sci Polym Chem Ed 12:295CrossRefGoogle Scholar
  13. 13.
    Lucas PC (1989) Polym Degrad Stab 26:203CrossRefGoogle Scholar
  14. 14.
    Otocka E, Curran PS, Porter RS (1989) J Appl Polym Sci 28:3227CrossRefGoogle Scholar
  15. 15.
    Weir NA, Kutok P, Whiting K (1989) Polym Degrad Stab 24:247CrossRefGoogle Scholar
  16. 16.
    Al Ani KE (2007) J Polym Res 14:83CrossRefGoogle Scholar
  17. 17.
    Subramanin K (2001) Eur Polym J 37:55CrossRefGoogle Scholar
  18. 18.
    Al Ani KE, El Barghouthi M, Buzour M (2006) Polym Degrad Stab 91:3252CrossRefGoogle Scholar
  19. 19.
    Torikai A, Shibata H (2002) Arab J Sci Eng 27:11Google Scholar
  20. 20.
    Al Ani KE, Ramadhan AE (2008) Polym Degrad Stab 93:1590CrossRefGoogle Scholar
  21. 21.
    Geuskens GD, Delaunois G, Lu-Vinh Q, Piret W, David C (1978) Eur Polym J 14:291CrossRefGoogle Scholar
  22. 22.
    Khalil Z, Michaille S, Lemaire J (1987) Makromol Chem 188:1743CrossRefGoogle Scholar
  23. 23.
    Weir NA, Whiting K (1989) Eur Polym J 25:291CrossRefGoogle Scholar
  24. 24.
    Torikai A, Takeuchi T, Fueki K (1983) Polym Photochem 3:307CrossRefGoogle Scholar
  25. 25.
    Weir NA, Whiting K (1990) Eur Polym J 26:991CrossRefGoogle Scholar
  26. 26.
    Lucas PC, Porter RS (1985) Polym Degrad Stab 13:287CrossRefGoogle Scholar
  27. 27.
    Ranby B, Rabek JF (1975) Photodegradation of polymers. Wiley, New York, p 165Google Scholar
  28. 28.
    Torikai A, Kobatake T, Okisaki F, Shuyama H (1995) Polym Degrad Stab 50:261CrossRefGoogle Scholar
  29. 29.
    Bera M, Rivaton A, Gandon C, Gardette JL (2000) Eur Polym J 36:1753CrossRefGoogle Scholar
  30. 30.
    Rivaton A, Gardatte JL (1998) Die Angew Makromol Chem 261/262:173CrossRefGoogle Scholar
  31. 31.
    Stokes S, Fox RB (1962) J Polym Sci 56:507CrossRefGoogle Scholar
  32. 32.
    Weir NA (1973) J Appl Polym Sci 17:401CrossRefGoogle Scholar
  33. 33.
    Takahashi H, Hasegawa M (1971) J Polym Sci B 9:685CrossRefGoogle Scholar
  34. 34.
    Ramadhan AE, Ahmed RK, Al Ani KE (2006) Polym J 38:355CrossRefGoogle Scholar
  35. 35.
    Al Ani KE, Suleiman AM (2007) J Photochem Photobiol 189:177CrossRefGoogle Scholar
  36. 36.
    Chen X, Wang J, Shen J (2005) Polym Degrad Stab 87:527CrossRefGoogle Scholar
  37. 37.
    Tovborg JJP, Kops JJ (1981) J Polym Sci Polym Chem Ed 19:2765CrossRefGoogle Scholar
  38. 38.
    Wu SK, Liu LH, Dai GS (1984) Polym Commun 2:153Google Scholar
  39. 39.
    Kaczmarek H (1995) Eur Polym J 31:1037CrossRefGoogle Scholar
  40. 40.
    Vaidergorin EYL, Marcontes MER, Tascano VG (1987) Polym Degrad Stab 18:329CrossRefGoogle Scholar
  41. 41.
    Weir NA (1982) In: Grassie N (ed) New trends in the photochemistry of polymers. Applied Science, London, p 207Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceHashemite UniversityZarkaJordan

Personalised recommendations