Journal of Materials Science

, Volume 44, Issue 10, pp 2610–2616 | Cite as

Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

  • C. J. Oliphant
  • C. J. ArendseEmail author
  • G. F. MalgasEmail author
  • D. E. Motaung
  • T. F. G. Muller
  • S. Halindintwali
  • B. A. Julies
  • D. Knoesen


We report on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological and structural changes of the filaments were investigated using scanning electron microscopy and X-ray diffraction, respectively. Our results conclusively show that the W-filament is not stable during the carburization process and that both mono- and ditungsten-carbides form within the first 5 min. Cracks and graphitic microspheres form on the carbide layer during the first 15 min at the temperatures ≥1600 °C. The microspheres subsequently coalesce to form a graphite layer, encapsulating a fully carburized filament at the temperature of 2000 °C after 60 min, which inhibits the catalytic activity of the filament to produce atomic hydrogen. The structural changes of the filament also induce variations in its temperature, illustrating the instability of the filament during the deposition of CNTs.


Carburization Filament Temperature Silicon Thin Film Deposition Pressure Carbon Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support of the Department of Science and Technology, the National Research Foundation and the Council for Scientific and Industrial Research (Project No. HGERA2S) of South Africa. The authors are especially thankful to Mr. Adrian Josephs (Microscopy Unit, University of the Western Cape) for his assistance with the SEM measurements and sample preparation.


  1. 1.
    Moustakas TD (1989) Solid State Ionics 32–33:861CrossRefGoogle Scholar
  2. 2.
    Park SS, Lee JY (1993) J Mater Sci 28:1799. doi: CrossRefGoogle Scholar
  3. 3.
    Sein H, Ahmed W, Hassan U, Ali N, Cracio JJ, Jackson MJ (2002) J Mater Sci 37:5057. doi: CrossRefGoogle Scholar
  4. 4.
    Fortunato W, Chiquito AJ, Galzerani JC, Moro JR (2007) J Mater Sci 42:7331. doi: CrossRefGoogle Scholar
  5. 5.
    Rastogi AC, Desu SB (2005) Polymer 46:3440CrossRefGoogle Scholar
  6. 6.
    Filonovich SA, Ribeiro M, Rolo AG, Alpuim P (2008) Thin Solid Films 516:576CrossRefGoogle Scholar
  7. 7.
    Weissenbacher R, Haubner R, Aigner K, Lux B (2002) Diamond Relat Mater 11:191CrossRefGoogle Scholar
  8. 8.
    Pal S, Jacob C (2006) J Mater Sci 41:5429. doi: CrossRefGoogle Scholar
  9. 9.
    Dillon AC, Mahan AH, Alleman JL, Heben MJ, Parilla PA, Jones KM (2003) Thin Solid Films 430:292CrossRefGoogle Scholar
  10. 10.
    Sommer M, Smith FW (1990) J Mater Res 511:2433CrossRefGoogle Scholar
  11. 11.
    Van der Werf CHM, Van Veenendaal PATT, Van Veen MK, Hardeman AJ, Rusche MYS, Rath JK, Schropp REI (2003) Thin Solid Films 430:46CrossRefGoogle Scholar
  12. 12.
    Roger J, Audubert F, Petitcorps YL (2008) J Mater Sci 43:3938. doi: CrossRefGoogle Scholar
  13. 13.
    Kromka A, Janίk J, Šatka A, Pavlov J, Červeň I (2001) Acta Physica Slovaca 51:359Google Scholar
  14. 14.
    Sommer M, Mui K, Smith FW (1989) Solid State Commun 69:775CrossRefGoogle Scholar
  15. 15.
    Schwarz S, Zeiler E, Rosiwal SM, Singer RF (2002) Mater Sci Eng A 335:236CrossRefGoogle Scholar
  16. 16.
    Okoli S, Haubner R, Lux B (1991) Surf Coat Technol 47:585CrossRefGoogle Scholar
  17. 17.
    Matsubara H, Sakuma T (1990) J Mater Sci 25:4472. doi: CrossRefGoogle Scholar
  18. 18.
    Davidson CF, Alexander GB, Wadsworth ME (1979) Metall Trans A 10A:1059CrossRefGoogle Scholar
  19. 19.
    Wolden C, Gleason KK (1994) J Appl Phys 62:3102Google Scholar
  20. 20.
    Arendse CJ, Malgas GF, Scriba MR, Cummings FR, Knoesen D (2007) J Nanosci Nanotechnol 7:3638CrossRefGoogle Scholar
  21. 21.
    International Centre for Diffraction Data (ICDD): W (89-3012), W2C (79-0743), WC (89-2727) and graphite (75-1621)Google Scholar
  22. 22.
    Vieira SMC, Rego CA, Birkett PR (2008) Diamond Relat Mater 17:100CrossRefGoogle Scholar
  23. 23.
    Hernberg R, Li DM, Mäntylä T (1998) Diamond Relat Mater 7:1709CrossRefGoogle Scholar
  24. 24.
    Langmuir L (1912) J Am Chem Soc 34:1310CrossRefGoogle Scholar
  25. 25.
    Honda S, Katayama M, Lee K, Ikuno T, Ohkura S, Oura K, Furuta H, Hirao T (2003) Jpn J Appl Phys 42:L441CrossRefGoogle Scholar
  26. 26.
    Seo HK, Ansari SG, Kim GS, Kim YS, Shin HS (2004) J Mater Sci 39:5771. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. J. Oliphant
    • 1
    • 2
  • C. J. Arendse
    • 1
    • 2
    Email author
  • G. F. Malgas
    • 2
    Email author
  • D. E. Motaung
    • 1
    • 2
  • T. F. G. Muller
    • 1
  • S. Halindintwali
    • 1
  • B. A. Julies
    • 1
  • D. Knoesen
    • 1
  1. 1.Department of PhysicsUniversity of the Western CapeBellvilleSouth Africa
  2. 2.National Centre for Nano-Structured MaterialsCSIR Materials Science and ManufacturingPretoriaSouth Africa

Personalised recommendations