Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2560–2565 | Cite as

Photoluminescence properties of pyrolytic boron nitride

  • Luc MuseurEmail author
  • Andrei Kanaev
Article

Abstract

We report on spectroscopic study of pyrolytic hBN (pBN) by means of time- and energy-resolved photoluminescence methods. A high purity pBN samples (though low crystallinity) allow complementary information about excited states involved into the luminescence process. We affirm our recent conclusions about the impurity-related nature of most of fluorescence bands in microcrystalline hBN. In addition, a broad band centred at 3.7 eV previously not considered because of its superposition with an intense structured impurity emission is attributed to the radiative recombination of deep DAPs.

Keywords

Boron Nitride Radiative Recombination Hexagonal Boron Nitride Time Gate Donor Acceptor Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the IHP-Contract HPRI-CT-1999-00040 of the European Commission. The authors are grateful to G. Stryganyuk for assistance in conducting experiments at SUPERLUMI station and to V. Solozhenko for helpful discussions and the kindly providing pyrolytic boron nitride samples.

References

  1. 1.
    Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404CrossRefGoogle Scholar
  2. 2.
    Jaffrennou P, Barjon J, Lauret JS, Attal-Tretout B, Ducastelle F, Loiseau A (2007) J Appl Phys 102:116102CrossRefGoogle Scholar
  3. 3.
    Silly MG, Jaffrennou P, Barjon J, Lauret JS, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E (2007) Phys Rev B Condens Matter Mater Phys 75:085205CrossRefGoogle Scholar
  4. 4.
    Lukomskii AI, Shipilo VB, Gameza LM (1993) J Appl Spectrosc 57:607CrossRefGoogle Scholar
  5. 5.
    Larach S, Shrader RE (1956) Phys Rev 102:582CrossRefGoogle Scholar
  6. 6.
    Museur L, Kanaev AV (2008) J Appl Phys 103:103520CrossRefGoogle Scholar
  7. 7.
    Museur L, Anglos D, Petitet JP, Michel JP, Kanaev AV (2007) J Luminescence 127:595CrossRefGoogle Scholar
  8. 8.
    Kanaev AV, Petitet JP, Museur L, Marine V, Solozhenko VL, Zafiropulos V (2004) J Appl Phys 96:4483CrossRefGoogle Scholar
  9. 9.
    Wu J, Han W, Walukiewicz W, Ager JW, Shan W, Haller EE, Zettl A (2004) Nano Lett 4:647CrossRefGoogle Scholar
  10. 10.
    Yao B, Shen ZX, Liu L, Su WH (2004) J Phys Condens Matter 16:2181CrossRefGoogle Scholar
  11. 11.
    Solozhenko VL, Lazarenko AG, Petitet JP, Kanaev AV (2001) J Phys Chem Solids 62:1331CrossRefGoogle Scholar
  12. 12.
    Larach S, Shrader RE (1956) Phys Rev 104:68CrossRefGoogle Scholar
  13. 13.
    Museur L, Feldbach E, Kanaev A (2008) Phys Rev B 78:155204CrossRefGoogle Scholar
  14. 14.
    Museur L, Petitet J-P, Michel J-P, Marine W, Anglos D, Fotakis C, Kanaev AV (2008) J Appl Phys 104:093504CrossRefGoogle Scholar
  15. 15.
    Moore AW (1990) J Cryst Growth 106:6CrossRefGoogle Scholar
  16. 16.
    Le Gallet S, Chollon G, Rebillat F, Guette A, Bourrat X, Naslain R, Couzi M, Bruneel JL (2004) J Eur Ceram Soc 24:33CrossRefGoogle Scholar
  17. 17.
    Zimmerer G (1991) Nucl Instrum Methods Phys Res A 308:178CrossRefGoogle Scholar
  18. 18.
    Zimmerer G (2007) Radiat Meas 42:859CrossRefGoogle Scholar
  19. 19.
    Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348CrossRefGoogle Scholar
  20. 20.
    Stepanov VA, Stepanov PA (1998) Opt Spectrosc 85:893Google Scholar
  21. 21.
    Kobayashi H, Shibata H, Tagawa S (1994) Nucl Instrum Methods Phys Res B 90:556CrossRefGoogle Scholar
  22. 22.
    Watanabe K, Taniguchi T, Kanda H (2004) Phys Status Solidi A 201:2561CrossRefGoogle Scholar
  23. 23.
    Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Science 317:932CrossRefGoogle Scholar
  24. 24.
    Arnaud B, Lebègue S, Rabiller P, Alouani M (2006) Phys Rev Lett 96:026402CrossRefGoogle Scholar
  25. 25.
    Pankove JI (1971) Optical processes in semiconductors. Dover Publications, New YorkGoogle Scholar
  26. 26.
    Taylor CA, Brown SW, Subramaniam V, Kidner S, Rand SC, Clarke R (1994) Appl Phys Lett 65:1251CrossRefGoogle Scholar
  27. 27.
    Zunger A, Katzir A, Halperin A (1976) Phys Rev B 13:5560CrossRefGoogle Scholar
  28. 28.
    Reshchikov MA, Yi GC, Wessels BW (1999) Phys Rev B 59:13176CrossRefGoogle Scholar
  29. 29.
    Remes Z, Nesladek M, Haenen K, Watanabe K, Taniguchi T (2005) Phys Status Solidi A Appl Mater Sci 202:2229CrossRefGoogle Scholar
  30. 30.
    Lopatin VV, Konusov FV (1992) J Phys Chem Solids 53:847CrossRefGoogle Scholar
  31. 31.
    Zhi CY, Bando Y, Tang CC, Golberg D, Xie RG, Sekigushi T (2005) Appl Phys Lett 86:213110CrossRefGoogle Scholar
  32. 32.
    Berzina B, Trinkler L, Korsak V, Krutohvostov R, Carroll DL, Ucer KB, Williams RT (2006) Phys Status Solidi B Basic Solid State Phys 243:3840CrossRefGoogle Scholar
  33. 33.
    Watanabe K, Taniguchi T, Kuroda T, Kanda H (2006) Appl Phys Lett 89:141902CrossRefGoogle Scholar
  34. 34.
    Taniguchi T, Watanabe K (2007) J Cryst Growth 303:525CrossRefGoogle Scholar
  35. 35.
    Zunger A, Katzir A (1975) Phys Rev B 11:2378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire de Physique des Lasers-LPL, CNRS UMR 7538Institut Galilée, Université Paris 13VilletaneuseFrance
  2. 2.Laboratoire d’Ingénierie des Matériaux et des Hautes Pressions-LIMHP, CNRSInstitut Galilée, Université Paris 13VilletaneuseFrance

Personalised recommendations