Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2548–2552 | Cite as

Photocatalytic activities of LaFe1−xZnxO3 nanocrystals prepared by sol–gel auto-combustion method

  • Shuhua DongEmail author
  • Kejing Xu
  • Guishan Tian
Article

Abstract

Nanophotocatalysts LaFe1−xZnxO3 (= 0, 0.05, 0.1, 0.3, 0.5) were successfully prepared by sol–gel auto-combustion method. The samples were characterized by X-ray diffraction (XRD), ultraviolet/visible absorption spectra (UV–vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photocatalytic activities of the prepared samples were investigated for the photodegradation of methylene blue (MB). The results show that the lattice constant of LaFe1−xZnxO3 nanocrystals increases due to the substitution of Zn for Fe, which leads to the lattice distortion. The absorption edges of Zn-doped LaFeO3 display a red shift with a significant absorption between 400 and 500 nm. Doping with the Zn ions enhances the photodegradation rate of LaFeO3 for MB. The LaFe0.7Zn0.3O3 particles are spherical with mean grain size of about 20–30 nm, which exhibits the highest degradation rate of 75% under irradiation time of 150 min.

Keywords

Methylene Blue Photocatalytic Activity ZnFe2O4 High Photocatalytic Activity LaFeO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Yongzhi Wang for performing the XRD measurements, Liu Feng for performing the SEM measurements, Shandong ceramic basic complex materials research center for financial supports, and Dr. Yujun Bai’s support and help.

References

  1. 1.
    Li S, Jing L, Fu W, Yang L, Xin B, Fu H (2007) Mater Res Bull 42:203CrossRefGoogle Scholar
  2. 2.
    Randeniya LK, Murphy AB, Plumb IC (2008) J Mater Sci 43:1389. doi: https://doi.org/10.1007/s10853-007-2309-z CrossRefGoogle Scholar
  3. 3.
    Lishan J, Tong D, Qingbiao L, Yong T (2007) Catal Commun 8:963CrossRefGoogle Scholar
  4. 4.
    Yang Y, Sun Y, Jiang Y (2006) Mater Chem Phys 96:234CrossRefGoogle Scholar
  5. 5.
    Yin J, Zou Z, Ye J (2003) J Phys Chem B 107:61CrossRefGoogle Scholar
  6. 6.
    Niu X, Li H, Liu G (2005) J Mol Catal A Chem 232:89CrossRefGoogle Scholar
  7. 7.
    Tong J, Yang W, Zhu B, Cai R (2002) J Membr Sci 203:175CrossRefGoogle Scholar
  8. 8.
    Porob DG, Maggard PA (2006) J Solid State Chem 179:1727CrossRefGoogle Scholar
  9. 9.
    Dong S-h, Xu K-j, Liu J-c (2007) J Synth Cryst 36:433Google Scholar
  10. 10.
    Dong S-h, Tian G-s, Feng L (2008) Chin J Nonferr Met 18:1353Google Scholar
  11. 11.
    Dereń PJ, Pązik R, Stręk W, Boutinaud Ph, Mahiou R (2008) J Alloys Compd 451:595CrossRefGoogle Scholar
  12. 12.
    Chen Y, Yuan H, Tian G, Zhang G, Feng S (2007) J Solid State Chem 180:167CrossRefGoogle Scholar
  13. 13.
    Debnath T, Rüscher CH, Gesing TM, Koepke J, Hussain A (2008) J Solid State Chem 181:783CrossRefGoogle Scholar
  14. 14.
    Zhang HE, Zhang BF, Wang GF, Dong XH, Gao Y (2007) J Magn Magn Mater 312:126CrossRefGoogle Scholar
  15. 15.
    Xiao Q, Si Z, Yu Z, Qiu G (2007) Mater Sci Eng B 137:189CrossRefGoogle Scholar
  16. 16.
    Deorsola FA, Vallauri D (2008) J Mater Sci 43:3274. doi: https://doi.org/10.1007/s10853-008-2530-4 CrossRefGoogle Scholar
  17. 17.
    Roy PK, Bera J (2008) J Mater Process Technol 197:279CrossRefGoogle Scholar
  18. 18.
    Lu P (2006) Basis of inorganic material science. Publisher of Wuhan University of Technology, WuhanGoogle Scholar
  19. 19.
    Burton AW, Ong K, Rea T, Chan IY (2009) Microporous Mesoporous Mater 117:83CrossRefGoogle Scholar
  20. 20.
    Zhang H, Fu X, Niu S, Xin Q (2008) J Alloys Compd 459:103CrossRefGoogle Scholar
  21. 21.
    Ekambaram S, Iikubo Y, Kudo A (2007) J Alloys Compd 433:237CrossRefGoogle Scholar
  22. 22.
    Huang Y, Xie Y, Fan L, Li Y, Wei Y, Lin J, Wu J (2008) Int J Hydrogen Energy 33:6432CrossRefGoogle Scholar
  23. 23.
    Fu X-x, Yang Q-h, Sang L-x (2002) Chem J Chin Univ 23:283Google Scholar
  24. 24.
    Xu Y-L (1991) Semiconductor basis on oxides and compounds. Xi′an University of Electronic Science and Technology Press, Xi′anGoogle Scholar
  25. 25.
    Zhang G, Zhou J, Ding X, Hu Y, Xie J (2008) J Hazard Mater 158:287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringShandong University of TechnologyZiboPeople’s Republic of China

Personalised recommendations