Journal of Materials Science

, Volume 44, Issue 11, pp 2725–2735 | Cite as

Nanocrystalline alumina dispersed in nanocrystalline nickel: enhanced mechanical properties

  • A. Jung
  • H. NatterEmail author
  • R. Hempelmann
  • E. Lach


Nickel–alumina nano-composites have been electrochemically deposited by pulse plating from a suspension of nano-Al2O3 in a Watts-type electrolyte. The influence of duty cycle and amount of suspended Al2O3 on the content of Al2O3 in the deposit was studied. With an optimized set of plating parameters, the influences of additives on wear resistance, hardness and the deformation behaviour (quasistatic and dynamic compression tests) of these nickel–alumina nano-composites in comparison to pure nano-nickel were investigated. The addition of Al2O3 tripled the yield stress and improved the hardness up to twice the value of pure nickel. Due to its high hardness and stiffness, the nickel–alumina composites deposited with the additive naphthalene-1,3,6-trisulfonic acid trisodium salt in the electrolyte are appropriate to wear resistant coating. Nickel–alumina nano-composites deposited without any additives are hard and at the same time ductile and so considered as ideal structural materials.


Duty Cycle Composite Coating Saccharine Particle Content High Velocity Oxygen Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the helpful discussions we had with Prof. Horst Vehoff. We thank Sylvia Kuhn for the help with electron micrographs, and Axel Bohmann for the help with the SHPB-measurements.


  1. 1.
    Sinha PK, Dhananjayan N, Chakrabarti HK (1973) Plat 60:55Google Scholar
  2. 2.
    Bahrololoom ME, Sani R (2005) Surf Coat Technol 192:154CrossRefGoogle Scholar
  3. 3.
    Muller B, Ferkel H (2000) Mater Sci Forum 343–346:476CrossRefGoogle Scholar
  4. 4.
    Benea L (1999) Mater Manuf Processes 14:231CrossRefGoogle Scholar
  5. 5.
    Gay PA, Bercot P, Pagetti J (2001) Surf Coat Technol 140:147CrossRefGoogle Scholar
  6. 6.
    Moller A, Hahn H (1999) Nanostruct Mater 12:259CrossRefGoogle Scholar
  7. 7.
    Joshi MN, Totalani M (1979) J Electrochem Soc India 28:35Google Scholar
  8. 8.
    Babu GNKR, Muralidharan VS, Vasu KI (1991) Plat and Surf Finish 78:126Google Scholar
  9. 9.
    Medeliene V, Juskenas R, Kurtinaitiene M et al (2004) Pol J Chem 78:1305Google Scholar
  10. 10.
    Kaisheva M, Fransaer J (2004) J Electrochem Soc 151:C89CrossRefGoogle Scholar
  11. 11.
    Ibrahim KM, Aal AA, Hamid ZA (2005) Int J Cast Met Res 18:315CrossRefGoogle Scholar
  12. 12.
    Hu F, Chan KC (2004) Appl Surf Sci 233:163CrossRefGoogle Scholar
  13. 13.
    Surender M, Balasubramaniam R, Basu B (2004) Surf Coat Technol 187:93CrossRefGoogle Scholar
  14. 14.
    Stroumbouli M, Gyftou P, Pavlatou EA et al (2005) Surf Coat Technol 195:325CrossRefGoogle Scholar
  15. 15.
    Surender M, Basu B, Balasubramaniam R (2004) Advances in surface treatment: research & applications (ASTRA). Proceedings of the international conference, Hyderabad, India, Nov 3–6, 2003, p 130Google Scholar
  16. 16.
    Endrino JL, Nainaparampil JJ, Krzanowski JE (2002) Surf Coat Technol 157:95CrossRefGoogle Scholar
  17. 17.
    Eroglu S, Gallois B (1995) J Mater Sci 30:1754. doi: CrossRefGoogle Scholar
  18. 18.
    AbiAkar H, Riley C, Maybee G (1996) Chem Mater 8:2601CrossRefGoogle Scholar
  19. 19.
    Helle K, Walsh F (1997) Trans Inst Met Finish 75:53CrossRefGoogle Scholar
  20. 20.
    Lee EC, Moon IT (2002) Plat Surf Finish 89:55Google Scholar
  21. 21.
    Szeptycka B, Gajewska-Midzialek A (2007) Rev Adv Mater Sci 14:135Google Scholar
  22. 22.
    Tang NK, Zhao WZ (2007) Surf Eng 23:157CrossRefGoogle Scholar
  23. 23.
    Wang F, Arai S, Endo M (2004) Mater Trans 45:1311CrossRefGoogle Scholar
  24. 24.
    Chen XH, Chen CS, Xiao HN et al (2005) Surf Coat Technol 191:351CrossRefGoogle Scholar
  25. 25.
    Chen XH, Cheng FQ, Li SL et al (2002) Surf Coat Technol 155:274CrossRefGoogle Scholar
  26. 26.
    Guo C, Zuo Y, Zhao XH et al (2007) Surf Coat Technol 201:9491CrossRefGoogle Scholar
  27. 27.
    Chang YC, Chang YY, Lin CI (1998) Electrochim Acta 43:315CrossRefGoogle Scholar
  28. 28.
    Chang YY, Lin CI, Chang YC (1997) J Chin Inst Chem Eng 28:245Google Scholar
  29. 29.
    Periene N, Cesuniene A, Ramanauskiene D et al (1994) Bull Electrochem 10:486Google Scholar
  30. 30.
    Szczygiel B, Kolodziej M (2005) Electrochim Acta 50:4188CrossRefGoogle Scholar
  31. 31.
    Wang Y, Xu Z (2006) Surf Coat Technol 200:3896CrossRefGoogle Scholar
  32. 32.
    Leo NT, Chen WP, Xiao ZY et al (2002) Trans Nonferrous Met Soc China 12:886Google Scholar
  33. 33.
    Dong SR, Tu JP, Zhang XB (2001) Mater Sci Eng A A313:83CrossRefGoogle Scholar
  34. 34.
    Feng Y, Yuan HL, Zhang M (2005) Mater Charact 55:211CrossRefGoogle Scholar
  35. 35.
    Schulz P (2007) Verbundwerkstoffe mit Metallmatrix. in “CCG-Seminar WB 6.06: Werkstoffe für neue Schutztechnologien”. Carl-Cranz-Gesellschaft, FreiburgGoogle Scholar
  36. 36.
    Lach E (2007) MMC- und C/C-Werkstoffe dynamische und ballistische Eigenschaften, in “CCG-Seminar WB 6.06: Werkstoffe für neue Schutztechnologien”. Carl-Cranz-Gesellschaft, FreiburgGoogle Scholar
  37. 37.
    Gupta S, Roy RK, Chowdhury MP et al (2004) Vac 75:111CrossRefGoogle Scholar
  38. 38.
    Turunen E, Keskinen J, Heczko O et al (2006) Adv Eng Mater 8:669CrossRefGoogle Scholar
  39. 39.
    Hannula SP, Turunen E, Keskinen J et al (2006) Sci Eng Ceram 317–318:539Google Scholar
  40. 40.
    Krueger HG, Knote A, Schindler U et al (2004) J Mater Sci 39:839. doi: CrossRefGoogle Scholar
  41. 41.
    Sarkar P, Datta S, Nicholson PS (1997) Ceram Trans 85:231Google Scholar
  42. 42.
    Sarkar P, Datta S, Nicholson PS (1997) Composites Part B 28B:49CrossRefGoogle Scholar
  43. 43.
    Ehrhardt J (1983) Oberfl-Surf 24:338Google Scholar
  44. 44.
    Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186CrossRefGoogle Scholar
  45. 45.
    Natter H, Hempelmann R (2003) Electrochim Acta 49:51CrossRefGoogle Scholar
  46. 46.
    Withers JC (1962) Prod Finish 26:62Google Scholar
  47. 47.
    Vereecken PM, Shao I, Searson PC (2000) J Electrochem Soc 147:2572CrossRefGoogle Scholar
  48. 48.
    O’Brien DJ, Martin PW, Williams RV (1966) Appl Mater Res 5:241Google Scholar
  49. 49.
    Brandes EA, Goldthorpe D (1967) Metalurgia (Bucharest) 76:195Google Scholar
  50. 50.
    Guglielmi N (1972) J Electrochem Soc 119:1009CrossRefGoogle Scholar
  51. 51.
    Celis JP, Roos JR, Buelens C (1987) J Electrochem Soc 134:1402CrossRefGoogle Scholar
  52. 52.
    Hornbogen E (1985) Czech J Phys B 35:193CrossRefGoogle Scholar
  53. 53.
    Georgiev G, Kamenova I, Georgieva V et al (2006) Godishnik na Sofiiskiya Universitet 98–99:159Google Scholar
  54. 54.
    Gladman T (1999) Mater Sci Technol 15:30CrossRefGoogle Scholar
  55. 55.
    Orowan E (1948) Symposium on internal stresses in metals and alloys. Institute of Metals, London, p 451Google Scholar
  56. 56.
    Nembach E (1997) Particle strengthening of metals and alloys. John Wiley and Sons, New YorkGoogle Scholar
  57. 57.
    Chruschtchow MM (1957) Proc Conf Lub Wear, p 655Google Scholar
  58. 58.
    Lach E, Radjaimia A, Leitner H et al (2006) J Phys IV Proc 134:839Google Scholar
  59. 59.
    Fischer H (1954) Elektrolytische Abscheidung und Elektrokristallisation von MetallenCrossRefGoogle Scholar
  60. 60.
    Lichtenberger A, Gazeaud G, Lach E (1988) In Dymat 88, AjaccioGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Physical ChemistrySaarland UniversitySaarbrückenGermany
  2. 2.ISL, French-German Research Institute of Saint-LouisSaint-LouisFrance

Personalised recommendations