Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2513–2519 | Cite as

The real part of AC conductance in amorphous nanocomposites ferromagnetic alloy–dielectric

  • A. M. SaadEmail author
Article

Abstract

Results of AC conductivity of the granular nanocomposites consisting of amorphous ferromagnetic alloy nanoparticles (Fe0.45Co0.45Zr0.10) embedded into amorphous dielectric matrix (Al2O3) are presented and analyzed here. Conductivity measurements were made for the samples of different metal-to-dielectric ratio x (25 < x < 65 at.%) in the frequency range of 0.1–1000 kHz at temperature of 80–340 K. Real part of AC conductance at low frequencies (f ≤ 5 kHz) have shown temperature dependencies σreal(T) corresponding to Mott hopping regime at x below the percolation threshold and metallic one beyond the percolation threshold. It was shown that σreal(T) dependencies satisfactorily follow the known relations of 3D percolate models with critical indexes t ≈ 1.6, q ≈ 0.9, and s = 0.62. The numerical estimations of the density of localized states N(EF) displayed a tendency to be decreased with x increase and the electron wave-function localization length a was about 11 nm.

Keywords

Percolation Threshold Nanocomposite Film Carrier Transport Metallic Nanoparticles Critical Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The author wishes to thank Belarusian State University especially Prof. A. Fedotov for allowing him to do this work during his devoted summer vacations for the last several years and also Prof. Yu. Kalinin from Voronezh State Technical University for presentation of the samples.

References

  1. 1.
    Salz D, Wark M, Baalmann A, Simon U, Jaeger N (2002) Phys Chem Chem Phys 4:2438CrossRefGoogle Scholar
  2. 2.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  3. 3.
    Boltcher CJF, Bordewijk P (1978) Theory of electric polarization, vol I & II, 2nd edn. Elsevier, New YorkGoogle Scholar
  4. 4.
    McCrum NG, Readond BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New YorkGoogle Scholar
  5. 5.
    Wong J, Angell CA (1976) Glasses: structure by spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Mott NF, Davis EA (1971) Electronic processes in non crystalline materials, 2nd edn. Oxford University, New YorkGoogle Scholar
  7. 7.
    Pollak M, Geballe TH (1961) Phys Rev 122:1742CrossRefGoogle Scholar
  8. 8.
    Li W, Sun Y, Sullivan CR (2005) IEEE Trans Magn 41:3283CrossRefGoogle Scholar
  9. 9.
    Sullivan CR, Prabhakaran S, Dhagat P, Sun Y (2003) Trans Magn Soc Jpn 3:126CrossRefGoogle Scholar
  10. 10.
    Dhagat P, Prabhakaran S, Sullivan CR (2004) IEEE Trans Magn 40:2008CrossRefGoogle Scholar
  11. 11.
    Saad AM, Mazanik AV, Kalinin YuE, Fedotova JA, Fedotov AK, Wrotek S, Sitnikov AV, Svito IA (2004) Rev Adv Mater Sci 8:34Google Scholar
  12. 12.
    Dieny B, Speriosu VS, Metin S et al (1991) J Appl Phys 60:4774CrossRefGoogle Scholar
  13. 13.
    Wang ZJ, Mitsudo S, Watanable J (1997) J Magn Magn Mater 176:127CrossRefGoogle Scholar
  14. 14.
    Jonker B et al (2000) Phys Rev B 62:8180CrossRefGoogle Scholar
  15. 15.
    Kobayashi N, Ohnuma S, Masumoto T, Fujimori H (2001) J Appl Phys 90:4159CrossRefGoogle Scholar
  16. 16.
    Grunberg P (2001) J Phys Condens Matter 13:7691CrossRefGoogle Scholar
  17. 17.
    Schmidt G, Molenkamp LW (2002) Semicond Sci Technol 17:310CrossRefGoogle Scholar
  18. 18.
    Nishimura N, Hirai T, Koganei A et al (2002) J Appl Phys 91:5246CrossRefGoogle Scholar
  19. 19.
    Almokhtar M, Mibu K, Shinjo T (2002) Phys Rev B 66:134401CrossRefGoogle Scholar
  20. 20.
    Zaharko O, Oppeneer PM et al (2002) Phys Rev B 66:134406CrossRefGoogle Scholar
  21. 21.
    Kalaev VA, Kalinin YuE, Necaev VN, Sitnikov AV (2003) Bull Voronezh State Tech Univ Mater Sci 13:38Google Scholar
  22. 22.
    Saad AM, Fedotov AK, Fedotova JA, Svito IA, Andrievsky BV, Kalinin YuE, Fedotova VV, Malyunina-Bronskaya V, Patryn AA, Mazanik AV, Sitnikov AV (2006) Phys Status Solidi C 3:1283CrossRefGoogle Scholar
  23. 23.
    Saad AM, Fedotov AK, Svito IA, Mazanik AV, Andrievski BV, Patryn AA, Kalinin YuE, Sitnikov AV (2006) Prog Solid State Chem 14:139CrossRefGoogle Scholar
  24. 24.
    Saad AM, Fedotov AK, Svito IA, Fedotova JA, Andrievsky BV, Kalinin YuE, Patryn AA, Fedotova VV, Malyutina-Bronskaya V, Mazanik AV, Sitnikov AV (2006) J Alloys Compd 423:176CrossRefGoogle Scholar
  25. 25.
    Huang JCA, Hsu CY (2004) Appl Phys Lett 24:85Google Scholar
  26. 26.
    MacDonald JR (2005) Solid State Ionics 176:1961CrossRefGoogle Scholar
  27. 27.
    Fedotova J, Kalinin Yu, Fedotov A, Sitnikov A, Svito I, Zalesskij A, Jablonska A (2005) Hyperfine Interact 165:127CrossRefGoogle Scholar
  28. 28.
    Grimmet G (1999) Percolation. Springer-Verlag, Berlin, p 444CrossRefGoogle Scholar
  29. 29.
    Kalinin YuE, Remizov AN, Sitnikov AV (2004) Phys Solid State 46:2146CrossRefGoogle Scholar
  30. 30.
    Efros AL, Shklovski BI (1976) Phys Status Solidi B 76:475CrossRefGoogle Scholar
  31. 31.
    Saad AM, Andrievsky B, Fedotov A, Fedotova J, Figielski T, Kalinin Yu, Malyutina-Bronskaya V, Mazanik A, Patryn A, Sitnikov A, Svito IA (2005) In: Podor B, Horvath ZsJ, Basa P (eds) Proceedings of the 1st international workshop on semiconductor nanocrystals (SEMINANO), Budapest, Hungary, 10–12 Sept 2005, p 321Google Scholar
  32. 32.
    Mott NF, Devis EA (1979) Electron processes in noncrystalline materials. Clarendon Press, OxfordGoogle Scholar
  33. 33.
    Yasuda К, Yoshida A, Arizumi T (1977) Phys Status Solidi A 41:k181CrossRefGoogle Scholar
  34. 34.
    Austin IG, Mott NF (1969) Adv Phys 18:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Al-Balqa Applied University, Salt-JordanAmmanJordan

Personalised recommendations