Journal of Materials Science

, Volume 44, Issue 6, pp 1572–1579 | Cite as

Evidence for a double doping regime in Nd:YAG nanopowders

  • Marco GiorgettiEmail author
  • Mario Berrettoni
  • Maria Luisa Saladino
  • Eugenio Caponetti


Nanopowders of Yttrium Aluminium Garnet doped with neodymium (Nd:YAG) were investigated by X-Ray Absorption Fine Structure (XAFS) at the Nd LIII edge in the 1.3–20.8% doping range. XANES spectra appear similar in the full range of the Nd concentration. However, a significant decrease in the white line intensity of XANES is revealed as the quantity of Nd doping ions increases. Plotting the white line intensity as a function of Nd doping ions reveals two linear trends with two different slopes, identifying a threshold value where the neodymium concentration reaches 5 at.% This experimental finding provides support for the existence of a double doping regime in Nd:YAG nanopowders.


XANES Spectrum Garnet Phase White Line Intensity Neodymium Concentration Neodymium Doping 



The authors would like to thank MIUR for supporting this research through the PRIN 2007 prot. 20077R3PXF_002 “New nanocomposite preparation for optical, electric and magnetic applications.” TEM experimental data were provided by Centro Grandi Apparecchiature—UniNetLab—Università di Palermo funded by P.O.R. Sicilia 2000–2006, Misura 3.15 Azione C Quota Regionale. XAS measurements at Daresbury Laboratory were funded by the European Community—Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”). Thanks are due to S. Fiddy (Daresbury Laboratory) for his help in the execution of the measurements.

Supplementary material

10853_2009_3322_MOESM1_ESM.doc (580 kb)
Supplementary material 1 (DOC 542 kb)


  1. 1.
    Ikesue A, Furusato I, Kamata K (1995) J Am Ceram Soc 78:225CrossRefGoogle Scholar
  2. 2.
    Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) J Am Ceram Soc 78:1033CrossRefGoogle Scholar
  3. 3.
    Ahmed MA, Khalil AAI, Solyman S (2007) J Mater Sci 42:4098. doi: CrossRefGoogle Scholar
  4. 4.
    Xu WL, Yue TM, Man HC (2008) J Mater Sci 43:942. doi: CrossRefGoogle Scholar
  5. 5.
    Ikesue A, Aung Y, Taira T, Kamimura K, Yoshida K, Missing GA (2006) Ann Rev Mater Res 36:397CrossRefGoogle Scholar
  6. 6.
    Cockayne B (1966) J Am Ceram Soc 49:204CrossRefGoogle Scholar
  7. 7.
    Brandle CD, Barns LR (1974) J Cryst Growth 26:169CrossRefGoogle Scholar
  8. 8.
    Caslavsky JL, Viechnicky JD (1980) J Mater Sci 15:1709. doi: CrossRefGoogle Scholar
  9. 9.
    Lee SH, Kochawattana S, Messine GL, Dumm JQ, Quarles G, Castello V (2006) J Am Ceram Soc 89:1945CrossRefGoogle Scholar
  10. 10.
    Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954. doi: CrossRefGoogle Scholar
  11. 11.
    Chaim R, Shen ZJ (2008) J Mater Sci 43:5023. doi: CrossRefGoogle Scholar
  12. 12.
    Chaim R (2006) J Mater Sci 41:7862. doi: CrossRefGoogle Scholar
  13. 13.
    Li J, Pan Y, Qiu F, Wu Y, Liu W, Guo Y (2007) Ceram Int 33:1047CrossRefGoogle Scholar
  14. 14.
    Rabonovitch Y, Bogicevic C, Karolak F, Tetard D, Dammak H (2008) J Mater Process Technol 199:314CrossRefGoogle Scholar
  15. 15.
    Caponetti E, Enzo S, Lasio B, Saladino ML (2007) Opt Mater 29:1240CrossRefGoogle Scholar
  16. 16.
    Caponetti E, Saladino ML, Serra F, Enzo S (2007) J Mater Sci 42:4418. doi: CrossRefGoogle Scholar
  17. 17.
    Caponetti E, Chillura Martino D, Saladino ML, Leonelli C (2007) Langmuir 23:3947CrossRefGoogle Scholar
  18. 18.
    Lipinska L, Lojko L, Klos A, Ganschow S, Diduszko R, Ryba-Romanowski W, Pajaczkowska A (2007) J Alloys Compd 432:177CrossRefGoogle Scholar
  19. 19.
    Miller L, Avishai A, Kaplan WD (2006) J Am Ceram Soc 89:350CrossRefGoogle Scholar
  20. 20.
    Miller L, Kaplan WD (2008) J Am Ceram Soc 91:1693CrossRefGoogle Scholar
  21. 21.
    Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621CrossRefGoogle Scholar
  22. 22.
    Filipponi A (2001) J Phys Condens Matter 13:R23CrossRefGoogle Scholar
  23. 23.
    Giorgetti M, Berrettoni M, Scaccia S, Passerini S (2006) Inorg Chem 45:2750CrossRefGoogle Scholar
  24. 24.
    Giorgetti M, Passerini S, Smyrl WH, Berrettoni M (1999) Chem Mater 11:2257CrossRefGoogle Scholar
  25. 25.
    Giorgetti M, Berrettoni M, Smyrl WH (2007) Chem Mater 19:5991CrossRefGoogle Scholar
  26. 26.
    D’Angelo P, Benfatto M, Della Longa S, Pavel NV (2002) Phys Rev B 66:064209CrossRefGoogle Scholar
  27. 27.
    Gautier N, Gervais M, Landron C, Massiot D, Coutures JP (1998) Phys Stat Sol A 165:329CrossRefGoogle Scholar
  28. 28.
    Landron C, Hennet L, Coutures JP, Gailhanou M, Gamond M, Berar JF (1998) Europhys Lett 44:429CrossRefGoogle Scholar
  29. 29.
    Filipponi A, Di Cicco A, Natoli CR (1995) Phys Rev B 52:15122CrossRefGoogle Scholar
  30. 30.
    Filipponi A, Di Cicco A (1995) Phys Rev B 52:15135CrossRefGoogle Scholar
  31. 31.
    Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R (1997) Chem Phys Lett 275:108CrossRefGoogle Scholar
  32. 32.
    Giorgetti M, Berrettoni M (2008) Inorg Chem 47:6001CrossRefGoogle Scholar
  33. 33.
    Dobrzycki L, Bulska E, Pawlak DA, Frukacz Z, Wozniak K (2004) Inorg Chem 43:7656CrossRefGoogle Scholar
  34. 34.
    Hedin L, Lundqvist BI (1971) J Phys C 4:2064CrossRefGoogle Scholar
  35. 35.
    Solera JA, Garcia J, Proietti MG (1995) Phys Rev B 51:2678CrossRefGoogle Scholar
  36. 36.
    Krause M, Oliver JH (1979) J Phys Chem Ref Data 8:329CrossRefGoogle Scholar
  37. 37.
    Karabulut M, Marasinghe GK, Metwalli E, Wittenauer AK, Brow RK (2002) Phys Rev B 65:104206CrossRefGoogle Scholar
  38. 38.
    Stern EA, Siegel RW, Newville M, Sanders PG, Haskel D (1995) Phys Rev Lett 75:3874CrossRefGoogle Scholar
  39. 39.
    Witkowska A, Di Cicco A, Principi E (2007) Phys Rev B 76:104110CrossRefGoogle Scholar
  40. 40.
    Frenkel AI, Hills CW, Nuzzo RG (2001) J Phys Chem B 105:12689CrossRefGoogle Scholar
  41. 41.
    Bianconi A, Marcelli A, Dexpert H, Karnak R, Totani A, Jo T, Petiau J (1987) Phys Rev B 35:806CrossRefGoogle Scholar
  42. 42.
    Wu Z, Benfatto M, Natoli CR (1998) Phys Rev B 57:10336CrossRefGoogle Scholar
  43. 43.
    Bacewicz R, Twaròg A, Malinowska A, Wojtowicz T, Liu X, Furdyna JK (2005) J Phys Chem Solids 66:2004CrossRefGoogle Scholar
  44. 44.
    Klepka MT, Nedelko N, Greneche JM, Lawniczak-Jablonska K, Demchenko IN, Slawinska-Waniewska A, Rodrigues CA, Debrassi A, Bordini C (2008) Biomacromolecules 9:1586CrossRefGoogle Scholar
  45. 45.
    Filipponi A (1995) J Phys Condens Matter 7:9343CrossRefGoogle Scholar
  46. 46.
    D’Angelo P, De Panfilis S, Filipponi A, Persson I (2008) Chem Eur J 14:3045CrossRefGoogle Scholar
  47. 47.
    Nitani H, Nakagawa T, Yamanouchi M, Osuli T, Yuja M, Yamamoto TA (2004) Mater Lett 58:2076CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marco Giorgetti
    • 1
    Email author
  • Mario Berrettoni
    • 1
  • Maria Luisa Saladino
    • 2
  • Eugenio Caponetti
    • 3
  1. 1.Department of Physical and Inorganic ChemistryUniversity of Bologna and Unità di Ricerca INSTM di BolognaBolognaItaly
  2. 2.Department of Physical ChemistryUniversity of Palermo and Unità di Ricerca INSTM di PalermoPalermoItaly
  3. 3.Centro Grandi ApparecchiatureUniversity of PalermoPalermoItaly

Personalised recommendations