Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2489–2496 | Cite as

Preparation of mullite-based iron magnetic nanocomposite powders by reduction of solid solution

  • Hao WangEmail author
  • Tohru Sekino
  • Koichi Niihara
  • Zhengyi Fu
Article

Abstract

In this article, the preparation of mullite-based iron magnetic nanocomposite powders by hydrogen reduction of Fe-doped mullite solid solution with a nominal composition of Al5.4Fe0.6Si2O13 is reported. The formation process of Al5.4Fe0.6Si2O13 solid solution was analyzed using X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectrum (FT-IR), thermogravimetric, and differential thermal analysis (TG-DTA). It is found that doping with Fe3+ cation affects the crystallization temperature of mullite. During the hydrogen reduction process, more than 89% Fe3+ cation in solid solution were transformed into α-Fe phase when reduction temperature reached 1200 °C. Microstructure characterization of nanocomposite powders reduced at 1300 °C reveals that there are two types of α-Fe particles in mullite matrix. Fe nanoparticles with a size of approximately 10 nm were precipitated within the mullite grains, while Fe particles larger than hundreds of nanometers were located at the surfaces of the mullite grains. The measurement of the magnetic properties of nanocomposite powders indicates that large particles and nanoparticles of α-iron have the ferromagnetic and superparamagnetic behavior at room temperature, respectively.

Keywords

Calcination Temperature Reduction Temperature Iron Nanoparticles Iron Phase Nanocomposite Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

H. Wang acknowledges the financial support form the program for New Century Excellent Talents in University (NCET-05-0658) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry and A3 Foresight Program from Natural Science Foundation of China (NSFC No. 50821140308).

References

  1. 1.
    Corrias A, Casula MF, Falqui A, Paschina G (2004) Chem Mater 3130:16Google Scholar
  2. 2.
    Epifani M, Giannini C, Tapfer L, Vasanelli L (2000) J Am Ceram Soc 2385:83Google Scholar
  3. 3.
    Oldfield G, Ung T, Mulvaney P (2000) Adv Mater 1519:12Google Scholar
  4. 4.
    Zeng HB, Cai WP, Li Y, Hu JL, Liu PS (2005) J Phys Chem B 18260:109Google Scholar
  5. 5.
    Venezia AM, Pantaleo G, Longo A, Di Carlo G, Casaletto MP, Liotta FL, Deganello G (2005) J Phys Chem B 2821:109Google Scholar
  6. 6.
    Nawa M, Sekino T, Niihara K (1994) J Mater Sci 29:3185. doi: https://doi.org/10.1007/BF00356661 CrossRefGoogle Scholar
  7. 7.
    Ambrose T, Gavrin A, Chien CL (1992) J Magn Magn Mater L311:116Google Scholar
  8. 8.
    Li JG, Ni X, Wang G (2007) J Alloys Compd 349:440Google Scholar
  9. 9.
    Liu KW, Mücklich F (2003) Script Mater 207:49Google Scholar
  10. 10.
    Wan Q, Lin CL, Zhang NL, Liu WL, Yang G, Wang TH (2003) Appl Phys Lett 3162:82Google Scholar
  11. 11.
    Kim JC, Lee JW, Park BY, Choi CJ (2008) J Alloys Compd 258:449Google Scholar
  12. 12.
    Shang Y, Weert GV (1993) Hydrometallurgy 273:33Google Scholar
  13. 13.
    Santos A, Ardisson JD, Tambourgi EB, Macedo AAA (1998) J Magn Magn Mater 247:177–181Google Scholar
  14. 14.
    Rodeghiero ED, Tse OK, Chisaki J, Giannelis EP (1995) Mater Sci Eng A 151:195Google Scholar
  15. 15.
    Choa YH, Yang JK, Kim BH, Jeong YK, Lee JS, Nakayama T, Sekino T, Niihara K (2003) J Magn Magn Mater 12:266Google Scholar
  16. 16.
    Niihara K (1991) J Ceram Soc Jpn 974:99Google Scholar
  17. 17.
    Sekino T, Nakajima T, Ueda S, Niihara K (1997) J Am Ceram Soc 1139:80Google Scholar
  18. 18.
    Nawa M, Yamazaki K, Sekino T, Niihara K (1994) Mater Lett 299:20Google Scholar
  19. 19.
    Kondo H, Sekino T, Choa YH, Kusunose T et al (2002) J Nanosci Nanotechnol 485:2Google Scholar
  20. 20.
    Nakayama T, Kim BS, Kondo H et al (2004) J Euro Ceram Soc 259:24Google Scholar
  21. 21.
    Laurent Ch, Rousset A, Verelst M, Kannan KR, Raju AR, Rao CNR (1993) J Mater Chem 513:3Google Scholar
  22. 22.
    Laurent Ch, Blaszczyk Ch, Brieu M, Rousset A (1995) Nanostruct Mater 317:6Google Scholar
  23. 23.
    Carles V, Laurent Ch, Brieu M, Rousset A (1999) J Mater Chem 1003:9Google Scholar
  24. 24.
    Quénard O, Grave ED, Laurent Ch, Rousset A (1997) J Mater Chem 2457:7Google Scholar
  25. 25.
    Aksay IA, Dabbs DM, Sarikaya M (1991) J Am Ceram Soc 2343:74Google Scholar
  26. 26.
    Parmentier J, Vilminot S (1998) J Alloys Compd 136:264Google Scholar
  27. 27.
    Schneider H (1986) N Jb Min Mh 172:49Google Scholar
  28. 28.
    Schneider H (1984) J Am Ceram Soc C130:67Google Scholar
  29. 29.
    Ford WE, Rees WJ (1946) Trans Brit Ceram Soc 125:45Google Scholar
  30. 30.
    Baudin C, Osendi MI, Moya JS (1983) J Mater Sci Lett 186:2Google Scholar
  31. 31.
    Schneider H (1987) J Am Ceram Soc 43:70Google Scholar
  32. 32.
    Murthy MK, Hummel FA (1960) J Am Ceram Soc 267:43Google Scholar
  33. 33.
    Chaudhuri SP, Patra SK (2000) J Mater Sci Lett 4735:35Google Scholar
  34. 34.
    Brownell WE (1958) J Am Ceram Soc 226:41Google Scholar
  35. 35.
    Berry FJ, Bilsborrow RL, Dent AJ, Mortimer M, Ponton CB, Purser BJ, Whittle KR (1999) Polyhedron 1083:18Google Scholar
  36. 36.
    Ocaña M, Caballero A, González-Carreño T, Serna CJ (2000) Mater Res Bull 775:35Google Scholar
  37. 37.
    Sun S, Andres S, Hamann HF, Tiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD (2002) J Am Chem Soc 2884:124Google Scholar
  38. 38.
    Huber D (2005) Small 482:1Google Scholar
  39. 39.
    Matsumoto M, Miyata Y (2002) J Appl Phys 9635:91Google Scholar
  40. 40.
    Tartaj P, González-Carreño T, Bomatí-Miguel O, Serna CJ (2004) Phys Rev B 094401:69Google Scholar
  41. 41.
    Dong C (1999) J Appl Cryst 838:32Google Scholar
  42. 42.
    Laugier J, Bochu B (2001) Chekcell Graphical Powder Indexing Cell and Space group Assignment Software, https://doi.org/www.inpg.fr/LMGP. Accessed 16 Oct 2003
  43. 43.
    Skordilis CS, Pomonis PJ (1993) Thermochim Acta 137:216Google Scholar
  44. 44.
    Padmaja P, Anilkumar GM, Mukundan P, Aruldhas G, Warrier KGK (2001) Inter J Inorg Mater 693:3Google Scholar
  45. 45.
    Šarić A, Musić S, Nomura K, Popović S (1998) Mater Sci Eng B 43:56Google Scholar
  46. 46.
    Jin XH, Gao L, Guo JK (2002) J Euro Ceram Soc 1307:22Google Scholar
  47. 47.
    Voll D, Angere P, Beran A, Schneider H (2002) Vib Spectrosc 237:30Google Scholar
  48. 48.
    Pana O, Teodorescu CM, Chauvet O, Payen C, Macovei D, Turcu R, Soran ML, Aldea N, Barbu L (2007) Surf Sci 4352:601Google Scholar
  49. 49.
    Morales MP, González-Carreño T, Ocaña M, Alonso-Sañudo M, Serna CJ (2000) J Solid State Chem 458:155Google Scholar
  50. 50.
    Wilson JL, Poddar P, Fray NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) J Appl Phys 1439:95Google Scholar
  51. 51.
    Yoon M, Kim YM, Kim Y, Volkov V, Song HJ, Park YJ, Vasilyak SL, Park IW (2003) J Magn Magn Mater 357:265Google Scholar
  52. 52.
    Löffler JF, Meier JP, Doudin B, Ansermet JP, Wagner W (1998) Phys Rev B 2915:57Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hao Wang
    • 1
    Email author
  • Tohru Sekino
    • 2
  • Koichi Niihara
    • 3
  • Zhengyi Fu
    • 1
  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.The Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  3. 3.Extreme Energy-Density Research InstituteNagaoka University of TechnologyNiigataJapan

Personalised recommendations