Journal of Materials Science

, Volume 44, Issue 10, pp 2483–2488 | Cite as

Structural characterization of the ac conductivity in Ag ion conducting glasses

  • J. L. NdeugueuEmail author
  • M. Aniya


The material trends in various silver ion conducting glasses have been studied recently by focusing on the relationship between the first sharp diffraction peak (FSDP) wave number Q, and the fitting parameters of the ac conductivity, precisely the ratio (log A)/n, where A and n represent the pre-exponential factor and the power law exponent of Jonscher’s law, respectively. In the present paper, a model for the FSDP wave number dependence of the ratio (log A)/n has been proposed and a good agreement has been found with the experiments. By using the concept of bond fluctuation in superionic conductors, the results have been successfully explained, leading to the conclusion that the universal aspect of the power law reflects the universal pattern of the potential barrier at intermediate length scales. The result reconfirms that the ion transport in glasses is intimately related with the FSDP wave number.


Ag2S Ag2O Superionic Conductor Glassy System Frequency Dependent Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the Japan Society for the Promotion of Science for the Grant-in-Aid for Scientific Research (No.19560014), and the Ministry of Education, Culture, Sports, Science, and Technology of Japan for the Grant-in-Aid for Scientific Research on Priority Area, “Nanoionics (439)” and for the MONBUKAGAKUSHO-Scholarship.


  1. 1.
    Sidebottom DL (2000) Phys Rev B 61:14507CrossRefGoogle Scholar
  2. 2.
    Ingram MD (1987) Phys Chem Glasses 28:215Google Scholar
  3. 3.
    Papathanassiou AN (2006) J Non-Cryst Solids 352:5444CrossRefGoogle Scholar
  4. 4.
    Jonscher AK (1977) Nature 267:673CrossRefGoogle Scholar
  5. 5.
    Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873CrossRefGoogle Scholar
  6. 6.
    Elliott SR (1994) Solid State Ionics 70/71:27CrossRefGoogle Scholar
  7. 7.
    Mott NF, Davies EA (1979) Electronic processes in non-crystalline materials. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Long AR (1982) Adv Phys 31:553CrossRefGoogle Scholar
  9. 9.
    Elliott SR (1987) Adv Phys 36:135CrossRefGoogle Scholar
  10. 10.
    Aniya M (2008) J Non-Cryst Solids 354:365CrossRefGoogle Scholar
  11. 11.
    Papathanassiou AN (2005) Mater Lett 59:1634CrossRefGoogle Scholar
  12. 12.
    Cramer C, Brunklaus S, Ratai E, Gao Y (2003) Phys Rev Lett 91:266601CrossRefGoogle Scholar
  13. 13.
    Cutroni M, Mandanici A, Mustarelli P, Tomasi C (2002) Solid State Ionics 154–155:713CrossRefGoogle Scholar
  14. 14.
    Bhattacharya S, Ghosh A (2005) J Phys Condens Matter 17:5655CrossRefGoogle Scholar
  15. 15.
    Bhattacharya S, Ghosh A (2006) J Appl Phys 100:114119CrossRefGoogle Scholar
  16. 16.
    Bhattacharya S, Dutta D, Ghosh A (2006) Phys Rev B 73:104201CrossRefGoogle Scholar
  17. 17.
    Dutta D, Ghosh A (2007) J Chem Phys 127:044708CrossRefGoogle Scholar
  18. 18.
    Ndeugueu JL, Aniya M (2008) In: Chowdari BVR et al (eds) Solid state ionics. Macmillan, India, p 401Google Scholar
  19. 19.
    Taylor HE (1959) J Soc Glass Technol 43:124TGoogle Scholar
  20. 20.
    Funke K (1993) Prog Solid State Chem 22:111CrossRefGoogle Scholar
  21. 21.
    Rao KJ, Estournès C, Mènètrier M, Levasseur A (1994) Philos Mag B 70:809CrossRefGoogle Scholar
  22. 22.
    Vainas B, Almond DP, Luo J, Stevens R (1999) Solid State Ionics 126:65CrossRefGoogle Scholar
  23. 23.
    Nowick AS, Lim BS, Vaysleyb AV (1994) J Non-Cryst Solids 172–174:1243CrossRefGoogle Scholar
  24. 24.
    Sidebottom DL (1999) Phys Rev Lett 83:983CrossRefGoogle Scholar
  25. 25.
    Price DL (1996) Curr Opin Solid State Mater Sci 1:572CrossRefGoogle Scholar
  26. 26.
    Suzuya K, Price DL, Saboungi ML, Ohno H (1997) Nucl Instrum Methods Phys Res B 133:57CrossRefGoogle Scholar
  27. 27.
    Aniya M, Kawamura J (2002) Solid State Ionics 154–155:343CrossRefGoogle Scholar
  28. 28.
    Aniya M (1992) J Phys Soc Jpn 61:4474CrossRefGoogle Scholar
  29. 29.
    Aniya M (2000) Solid State Ionics 136–137:1085CrossRefGoogle Scholar
  30. 30.
    Rousselot C, Malugani JP, Mercier R, Tachez M, Chieux P, Pappin AJ, Ingram MD (1995) Solid State Ionics 78:211CrossRefGoogle Scholar
  31. 31.
    Chiodelli G, Campari G, Flor G, Magistris A, Villa M (1983) Solid State Ionics 8:311CrossRefGoogle Scholar
  32. 32.
    Minami T, Tanaka M (1980) J Solid State Chem 32:51CrossRefGoogle Scholar
  33. 33.
    Dejus RJ, Susman S, Volin KJ, Montague DG, Price DL (1992) J Non-Cryst Solids 143:162CrossRefGoogle Scholar
  34. 34.
    Kawamura J, Hiyama S (1992) Solid State Ionics 53–56:1227CrossRefGoogle Scholar
  35. 35.
    Börjesson L, Hassan AK, Swenson J, Torell LM, Fontana A (1993) Phys Rev Lett 70:1275CrossRefGoogle Scholar
  36. 36.
    Swenson J, McGreevy RL, Börjesson L, Wicks JD, Howells WS (1996) J Phys Condens Matter 8:3545CrossRefGoogle Scholar
  37. 37.
    Kawamura J (1997) In: Iwahara H (ed) Dynamics of fast ions in solids and its evolution for solid state ionics, Report of a Priority Area Research Program supported by The Ministry of Education, Science, Sport and Culture of Japan, p 11Google Scholar
  38. 38.
    Bhattacharya S, Ghosh A (2005) J Chem Phys 123:124514CrossRefGoogle Scholar
  39. 39.
    Takahashi H, Rikitake N, Sakuma T, Ishii Y (2004) Solid State Ionics 168:93CrossRefGoogle Scholar
  40. 40.
    Dutta D, Ghosh A (2005) Phys Rev B 72:024201CrossRefGoogle Scholar
  41. 41.
    Iwadate Y, Suzuki M, Hattori T, Fukushima K, Nishiyama S, Misawa M, Fukunaga T, Itoh K (2005) J Alloys Compd 389:229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations