Advertisement

Journal of Materials Science

, Volume 44, Issue 10, pp 2466–2470 | Cite as

Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics

  • Daojiang GaoEmail author
  • K. W. Kwok
  • Dunmin Lin
  • H. L. W. Chan
Article

Abstract

CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (TC), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d33 = 130 pC/N, planar electromechanical coupling coefficient kp = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.

Keywords

CeO2 Piezoelectric Property Optimal Sinter Temperature Orthorhombic Perovskite Structure BNKT Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region (Project No. PolyU 5188/06E) and the Centre for Smart Materials of The Hong Kong Polytechnic University.

References

  1. 1.
    Lin DM, Xiao DQ, Zhu JG, Yu P (2006) Appl Phys Lett 88:062901CrossRefGoogle Scholar
  2. 2.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236CrossRefGoogle Scholar
  3. 3.
    Wang CM, Wang JF, Gai ZG (2007) Script Mater 57:789CrossRefGoogle Scholar
  4. 4.
    Jardiel T, Caballero AC, Villegas M (2007) J Eur Ceram Soc 27:4115CrossRefGoogle Scholar
  5. 5.
    Xie RJ, Akimune Y, Matsuo K, Sugiyama T (2002) Appl Phys Lett 80:835CrossRefGoogle Scholar
  6. 6.
    Yu Z, Ang C, Guo R, Bhalla AS (2002) J Appl Phys 92:1489CrossRefGoogle Scholar
  7. 7.
    Guo YP, Kakimoto K, Ohsato H (2004) Solid State Commun 129:279CrossRefGoogle Scholar
  8. 8.
    Du HL, Luo F, Qu SB, Pei ZB, Zhu DM, Zhou WC (2007) J Appl Phys 102:054102CrossRefGoogle Scholar
  9. 9.
    Guo YP, Kakimoto K, Ohsato H (2005) Mater Lett 59:241CrossRefGoogle Scholar
  10. 10.
    Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2004) Jpn J Appl Phys 43:7159CrossRefGoogle Scholar
  11. 11.
    Lin DM, Kwok KW, Tian HY, Chan HLW (2007) J Am Ceram Soc 90:1458CrossRefGoogle Scholar
  12. 12.
    Lin DM, Kwok KW, Chan HLW (2007) Appl Phys Lett 90:232903CrossRefGoogle Scholar
  13. 13.
    Sahoo B, Panda PK (2007) J Mater Sci 42:4745. doi: https://doi.org/10.1007/s10853-006-0828-7 CrossRefGoogle Scholar
  14. 14.
    Srimaungsong P, Udomkan N, Pdungsap L, Winotai P (2005) Int J Mod Phys B 19:1757CrossRefGoogle Scholar
  15. 15.
    Jin D, Hing P, Sun CQ (2000) J Phys D Appl Phys 33:744CrossRefGoogle Scholar
  16. 16.
    Wang XX, Chan HLW, Choy CL (2005) Appl Phys A 80:333CrossRefGoogle Scholar
  17. 17.
    Herabut A, Safari A (1997) J Am Ceram Soc 80:2954CrossRefGoogle Scholar
  18. 18.
    Aparna M, Bhimasankaram T, Suryanarayana SV, Prasad G, Umar GSK (2001) Bull Mater Sci 24:497CrossRefGoogle Scholar
  19. 19.
    Zuo RZ, Rödel J, Chen RZ, Li LT (2006) J Am Ceram Soc 89:2010CrossRefGoogle Scholar
  20. 20.
    Lee BW, Lee EJ (2006) J Electroceram 17:597CrossRefGoogle Scholar
  21. 21.
    Pereira M, Peixoto AG, Gomes MJM (2001) J Eur Ceram Soc 21:1353CrossRefGoogle Scholar
  22. 22.
    Li YM, Chen W, Xu Q, Zhou J, Wang Y, Sun HJ (2007) Ceram Int 33:95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Daojiang Gao
    • 1
    Email author
  • K. W. Kwok
    • 1
  • Dunmin Lin
    • 1
  • H. L. W. Chan
    • 1
  1. 1.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityKowloonHong Kong, China

Personalised recommendations