Journal of Materials Science

, Volume 44, Issue 10, pp 2466–2470 | Cite as

Microstructure, electrical properties of CeO2-doped (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics

  • Daojiang Gao
  • K. W. Kwok
  • Dunmin Lin
  • H. L. W. Chan


CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (TC), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d33 = 130 pC/N, planar electromechanical coupling coefficient kp = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.



This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region (Project No. PolyU 5188/06E) and the Centre for Smart Materials of The Hong Kong Polytechnic University.


  1. 1.
    Lin DM, Xiao DQ, Zhu JG, Yu P (2006) Appl Phys Lett 88:062901CrossRefADSGoogle Scholar
  2. 2.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236CrossRefADSGoogle Scholar
  3. 3.
    Wang CM, Wang JF, Gai ZG (2007) Script Mater 57:789CrossRefGoogle Scholar
  4. 4.
    Jardiel T, Caballero AC, Villegas M (2007) J Eur Ceram Soc 27:4115CrossRefGoogle Scholar
  5. 5.
    Xie RJ, Akimune Y, Matsuo K, Sugiyama T (2002) Appl Phys Lett 80:835CrossRefADSGoogle Scholar
  6. 6.
    Yu Z, Ang C, Guo R, Bhalla AS (2002) J Appl Phys 92:1489CrossRefADSGoogle Scholar
  7. 7.
    Guo YP, Kakimoto K, Ohsato H (2004) Solid State Commun 129:279CrossRefADSGoogle Scholar
  8. 8.
    Du HL, Luo F, Qu SB, Pei ZB, Zhu DM, Zhou WC (2007) J Appl Phys 102:054102CrossRefADSGoogle Scholar
  9. 9.
    Guo YP, Kakimoto K, Ohsato H (2005) Mater Lett 59:241CrossRefGoogle Scholar
  10. 10.
    Matsubara M, Yamaguchi T, Kikuta K, Hirano S (2004) Jpn J Appl Phys 43:7159CrossRefADSGoogle Scholar
  11. 11.
    Lin DM, Kwok KW, Tian HY, Chan HLW (2007) J Am Ceram Soc 90:1458CrossRefGoogle Scholar
  12. 12.
    Lin DM, Kwok KW, Chan HLW (2007) Appl Phys Lett 90:232903CrossRefADSGoogle Scholar
  13. 13.
    Sahoo B, Panda PK (2007) J Mater Sci 42:4745. doi:10.1007/s10853-006-0828-7 CrossRefGoogle Scholar
  14. 14.
    Srimaungsong P, Udomkan N, Pdungsap L, Winotai P (2005) Int J Mod Phys B 19:1757CrossRefADSGoogle Scholar
  15. 15.
    Jin D, Hing P, Sun CQ (2000) J Phys D Appl Phys 33:744CrossRefADSGoogle Scholar
  16. 16.
    Wang XX, Chan HLW, Choy CL (2005) Appl Phys A 80:333CrossRefADSGoogle Scholar
  17. 17.
    Herabut A, Safari A (1997) J Am Ceram Soc 80:2954CrossRefGoogle Scholar
  18. 18.
    Aparna M, Bhimasankaram T, Suryanarayana SV, Prasad G, Umar GSK (2001) Bull Mater Sci 24:497CrossRefGoogle Scholar
  19. 19.
    Zuo RZ, Rödel J, Chen RZ, Li LT (2006) J Am Ceram Soc 89:2010CrossRefGoogle Scholar
  20. 20.
    Lee BW, Lee EJ (2006) J Electroceram 17:597CrossRefGoogle Scholar
  21. 21.
    Pereira M, Peixoto AG, Gomes MJM (2001) J Eur Ceram Soc 21:1353CrossRefGoogle Scholar
  22. 22.
    Li YM, Chen W, Xu Q, Zhou J, Wang Y, Sun HJ (2007) Ceram Int 33:95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Daojiang Gao
    • 1
  • K. W. Kwok
    • 1
  • Dunmin Lin
    • 1
  • H. L. W. Chan
    • 1
  1. 1.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityKowloonHong Kong, China

Personalised recommendations