Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2128–2136 | Cite as

Oxidation behavior of green coke-based carbon–ceramic composites incorporating micro- and nano-silicon carbide

  • Mandeep Kaur
  • Sandeep Kumar
  • P. R. Sengupta
  • V. Raman
  • G. BhatiaEmail author
Article

Abstract

The oxidation resistance of the carbon–ceramic composites developed using green coke-based carbon and carbon black as carbon source, boron carbide, and micro- and nano-silicon carbide was carried out in the temperature range of 800 to 1,200 °C. Silicon carbide particulate as such and silicon carbide obtained by the reaction of green coke and silicon provided micro silicon carbide while silicon and carbon black and sol–gel silica and carbon black used as silicon carbide precursors led to the formation of nano-silicon carbide. The oxidation resistance of these composites at 800 to 1,200 °C for 10 h showed that the size of the silicon carbide influenced the oxidation resistance. The weight gain due to protective coating formed on oxidation was higher in composites containing nano-silicon carbide as compared to the composites containing micro silicon carbide.

Keywords

Carbon Black Boron Carbide Ceramic Composite Boric Oxide Green Coke 

Notes

Acknowledgement

The authors are thankful to Dr. Vikram Kumar, Director, National Physical Laboratory, New Delhi, for his keen interest in the work and kind permission to publish the results and to Dr. A. K. Gupta, Head, Division of Engineering Materials, for his encouragement throughout this investigation. Thanks are due to Mr K.·N. Sood, Dr. A. K. Srivastava and Dr. S.·K. Halder for their valuable help in SEM, TEM, and X-ray studies, respectively. The authors also thank Department of Science and Technology, New Delhi for sanctioning the project on carbon–ceramic composites and also for the grant of project assistanceship to Mr. Sandeep Kumar.

References

  1. 1.
    Fitzer E (1987) Carbon 25:163CrossRefGoogle Scholar
  2. 2.
    Mckee DW (1986) Carbon 24:737CrossRefGoogle Scholar
  3. 3.
    Lee YJ, Radovic LR (2003) Carbon 41:1987CrossRefGoogle Scholar
  4. 4.
    Shimada S, Sato T (2002) Carbon 40:2469CrossRefGoogle Scholar
  5. 5.
    Feng HJ, Rong ZX, Jun LH, Bo XX, Wei FY, Min H (2004) J Mater Sci 39:7383. doi: https://doi.org/10.1023/B:JMSC.0000048756.96547.bf CrossRefGoogle Scholar
  6. 6.
    Ogawa I, Kobayyashi K, Nishikawa S (1988) J Mater Sci 23:1363. doi: https://doi.org/10.1007/BF01154601 CrossRefGoogle Scholar
  7. 7.
    Kobayyashi K, Maeda K, Sano K, Uchiyama H (1995) Carbon 33:397CrossRefGoogle Scholar
  8. 8.
    Raman V, Bhatia G, Aggrawal RK, Sengupta PR, Mishra A (2002) J Mater Sci Lett 21:317CrossRefGoogle Scholar
  9. 9.
    Raman V, Bhatia G, Mishra A, Sengupta PR, Saha M, Rashmi (2005) Mater Sci Eng A 412:31CrossRefGoogle Scholar
  10. 10.
    Prabhakaran PV, Sreejith KJ, Swaminathan B, Packirisamy S, Ninan KN (2009) J Mater Sci 44:528. doi: https://doi.org/10.1007/s10853-008-3087-y CrossRefGoogle Scholar
  11. 11.
    Guo Q, Song J, Liu L, Zang B (1999) Carbon 37:33CrossRefGoogle Scholar
  12. 12.
    Mckee DW, Sipro L, Lamby EJ (1984) Carbon 22:507CrossRefGoogle Scholar
  13. 13.
    Vaben R, Stover D (1994) J Mater Sci 29:3791. doi: https://doi.org/10.1007/BF00357350 CrossRefGoogle Scholar
  14. 14.
    Zhang WG, Cheng HM, Sano H, Uchiyama Y, Kobayyashi K, Zhou IJ, Zhen ZH, Zhou BL (1996) Carbon 36:1591CrossRefGoogle Scholar
  15. 15.
    Quanli J, Haijun Z, Suping L, Xiaolin J (2007) Ceram Int 33:309CrossRefGoogle Scholar
  16. 16.
    Sogabe T, Matsuda T, Kuroda K, Hirahata Y, Hino T, Yamashina T (1995) Carbon 33:1783CrossRefGoogle Scholar
  17. 17.
    Guo Q, Song J, Lui L, Zhang B (1998) Carbon 36:1597CrossRefGoogle Scholar
  18. 18.
    Raman V, Parashar VK, Dhakate SR, Bahl OP, Dhawan U (2000) J Am Ceram Soc 83:952CrossRefGoogle Scholar
  19. 19.
    Raman V, Parashar VK, Dhakate SR (2002) J Sol-Gel Sci Technol 25:175CrossRefGoogle Scholar
  20. 20.
    Lia HJ, Lia ZJ, Mengc AL, Lia KZ, Zhangc XN, Xub YP (2003) J Alloys Compd 352:279CrossRefGoogle Scholar
  21. 21.
    Raman V, Parashar VK, Bahl OP (1997) J Mater Sci Lett 16:1252CrossRefGoogle Scholar
  22. 22.
    Larpkiattaworn S, Ngernchuklin P, Khongwong W, Pankurddee N, Wada S (2006) Ceram Int 32:899CrossRefGoogle Scholar
  23. 23.
    Raman V, Bhatia G, Bhardwaj S, Srivastava AK, Sood KN (2005) J Mater Sci 40:1521. doi: https://doi.org/10.1007/s10853-005-0596-9 CrossRefGoogle Scholar
  24. 24.
    Raman V, Bhatia G, Mishra AK, Bhardwaj S, Sood KN (2006) Mater Lett 60:3906CrossRefGoogle Scholar
  25. 25.
    Raman V, Bhatia G, Sengupta PR, Srivastava AK, Sood KN (2007) J Mater Sci 42:5891. doi: https://doi.org/10.1007/s10853-006-1175-4 CrossRefGoogle Scholar
  26. 26.
    Tjong SC, Chen H (2004) Mater Sci Eng R 45:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mandeep Kaur
    • 1
  • Sandeep Kumar
    • 1
  • P. R. Sengupta
    • 1
  • V. Raman
    • 1
  • G. Bhatia
    • 1
    Email author
  1. 1.Division of Engineering Materials, National Physical LaboratoryCarbon Technology UnitNew DelhiIndia

Personalised recommendations