Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2393–2407 | Cite as

Modelling and prediction of the chemical and physical degradation of fibre reinforced plastics

  • Etienne Kolomoni NgoyEmail author
  • I. M. D. Campbell
  • R. G. Reid
  • R. Paskaramoorthy
Article
  • 142 Downloads

Abstract

Modelling and prediction of the environmental degradation of fibre reinforced plastics (FRP) has been hindered by the complexity of the process. Published works are limited to effects and mechanism characterisation or partial models, most of the time empirical. In this article, an analytical approach is presented which resolves the degradation process into only three components: the chemical link density variation, the cohesion force variation and the stress state modification. The first two are referred to as chemical and physical degradation. Based on material science theories, the analysis demonstrates that in a constant environment an exponential function correlates the chemical and physical degradation to the environmental factors. It is also shown that the chemical and physical degradation rate in a real service environment can be determined in a laboratory in a constant environment based only on the variation of chemical link density. Laboratory experiments show that the model correlates excellently with the degradation process.

Keywords

Degradation Rate Control Chart Environmental Degradation Cohesive Force Material Stiffness 

Notes

Acknowledgements

The author wishes to acknowledge the valuable support received from the University of the Witwatersrand, THRIP, DENEL and the DST/NRF Centre of Excellence in Strong Material (CoE-SM).

References

  1. 1.
    White JR, Turnbull SD (1994) J Mater Sci 29(3):584. doi: https://doi.org/10.1007/BF00445969 CrossRefGoogle Scholar
  2. 2.
    Barkatt A (2001) In: Jones RH (ed) Environmental effects on engineered materials. Marcel Dekker, New York, USA, p 419Google Scholar
  3. 3.
    Schutte CL (1994) Mater Sci Eng R 13:265CrossRefGoogle Scholar
  4. 4.
    Springer GS (ed) (1981) Environmental effect on composite materials, vol 1. Technomic, Westport CTGoogle Scholar
  5. 5.
    Springer GS (ed) (1988) Environmental effect on composite materials, vol 3. Technomic, Westport CTGoogle Scholar
  6. 6.
    Avena A, Bunsell AR (1988) Compos 19(5):355CrossRefGoogle Scholar
  7. 7.
    Srivastava VK (1999) Mater Sci Eng A 263:56CrossRefGoogle Scholar
  8. 8.
    Tang JM, Springer GS (1988) In: Springer GS (ed) Environmental effect on composite materials, vol 3. Technomic, Westport CT, p 65Google Scholar
  9. 9.
    Mills NJ (1993) Environmental effects. In: Plastics, microstructure and engineering applications, 2nd edn. Edward Arnold, UK, pp 228Google Scholar
  10. 10.
    Springer GS (1988) In: Springer GS (ed) Environmental effect on composite materials, vol 3. Technomic, Westport CTGoogle Scholar
  11. 11.
    Chin JW, Ouadi K, Nguyen T (1997) J Compos Technol & Res JCTRER 19(4):205CrossRefGoogle Scholar
  12. 12.
    Marsh LL, Lasky R, Seraphin DP, Springer GS (1988) In: Springer GS (ed) Environmental effect on composite materials, vol 3. Technomic, Westport CT, p 51Google Scholar
  13. 13.
    Liao K, Schultheisz C, Brinson C, Milkovich S (1995) Environmental durability of fiber-reinforced composites for infrastructure applications. In: Proceeding of the fourth ITI bridge. NDE users group conference, Absecon, NJ, USAGoogle Scholar
  14. 14.
    Lincoln Hawkins W (1972) In: Lincoln Hawkins W (ed) Polymer stabilization. Wiley-Interscience, NY, p 1Google Scholar
  15. 15.
    Kirkaldy JS, Young DJ (1981) Diffusion in the condensed state. Institute of Metals, London, pp 1, 310Google Scholar
  16. 16.
    Thominet F, Bellenger V, Merdas I, Launay A, Gauthier L, Salmon L (1997) Compos Sci Technol 57:1119CrossRefGoogle Scholar
  17. 17.
    Rao RMVGK, Balasubramania N, Chanda M (1988) In: Springer GS ed. Environmental effect on composite materials, vol 3. Technomic, Westport CTGoogle Scholar
  18. 18.
    Sonawala SP, Spontak RJ (1996) J Compos Mater 31(18):4745Google Scholar
  19. 19.
    Maron GA, Broutman LJ (1981) Polym Compos 2(3):132CrossRefGoogle Scholar
  20. 20.
    Stone MA, Schwartz IF, Chandler HD (1997) Compos Sci Technol 57:47CrossRefGoogle Scholar
  21. 21.
    MacCallum JR (1989) In: Eastmond GC, Ledwith A, Russo S, Sigwalt P (eds) Comprehensive polymer science, V6 polymer reactions. Pergamon Press, UK, p 529Google Scholar
  22. 22.
    Kaczmarek H (1996) Polym 37(2):189CrossRefGoogle Scholar
  23. 23.
    Sookay NK, Von Klemperer CJ, Verijenko VE (2003) Compos Struct 62:429CrossRefGoogle Scholar
  24. 24.
    Startsev OV, Krotov AS, Startseva LT (1999) Polym Degrad Stab 63:183CrossRefGoogle Scholar
  25. 25.
    Lee B-S, Motoyama T, Ichikawa K, Tabata Y, Lee D-C (1999) Polym Degrad Stab 66:271CrossRefGoogle Scholar
  26. 26.
    Prian L, Barkatt A (1999) J Mater Sci 34:3977. doi: https://doi.org/10.1023/A:1004647511910 CrossRefGoogle Scholar
  27. 27.
    Kumar BG, Singh RP, Nakamura T (2002) J Compos Mater 36(24):2713CrossRefGoogle Scholar
  28. 28.
    Ciriscioli PR, Lee WI, Peterson DG, Springer GS, Tang JM (1988) In: Springer GS (ed) Environmental effect on composite materials, vol 3. Technomic, Westport CT, p 45Google Scholar
  29. 29.
    Pritchard G, Speake SD (1987) Compos 18(3):227CrossRefGoogle Scholar
  30. 30.
    Nakamura T, Singh RP, Vaddadi P (2006) Exp Mech 36:257CrossRefGoogle Scholar
  31. 31.
    Reich L Stivala S (1971) Element of polymer degradation. McGrawHill, New York, pp 1, 165, 229Google Scholar
  32. 32.
    Verdu S, Verdu J (1997) Macromol 30:2262CrossRefGoogle Scholar
  33. 33.
    Belan F, Bellenger V, Mortaigne B, Verdu J (1997) Polym Degrad Stab 56:301CrossRefGoogle Scholar
  34. 34.
    Sevostianov I, Sookay NK, Von Klemperer CJ, Verijenko VE (2003) Compos Struct 62:417CrossRefGoogle Scholar
  35. 35.
    Celina M, Gillen KT, Assink RA (2005) Polym Degrad Stab 90:395CrossRefGoogle Scholar
  36. 36.
    SASOL (2002) Code of practice for inspection of in-service non-metallic equipments. Specification SP-100-42-2A Revision 1. SASOL, South AfricaGoogle Scholar
  37. 37.
    ISO 3417–1977(E) (1984) Measurement of vulcanization characteristics with the oscillating disc curemeter. Rubber—mixes and vulcanized rubber ISO standards handbook 22, vol 2. ISO, Switzerland, p 225Google Scholar
  38. 38.
    Ravve A (1967) Organic chemistry of macromolecules: an introductory textbook. E. Arnold, London, p 48Google Scholar
  39. 39.
    Lenz RW (1967) Viscoelastic behavior. Organic chemistry of synthetic high polymers. Interscience, NewYork, p 31Google Scholar
  40. 40.
    McCrum NG, Buckley CP, Bucknal CB (1997) Principles of polymer engineering. Oxford University Press, OxfordGoogle Scholar
  41. 41.
    Goodwin JW, Hughes RW (2000) Rheology for chemists an introduction. The royal society of chemists. Great Britain, CambridgeGoogle Scholar
  42. 42.
    Bondi A (1956) In: Eirich FR (ed) Rheology theory and application, vol 1. Academic Press Inc., New York, p 321Google Scholar
  43. 43.
    Colthup NB, Daly LH, Wiberly SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn. Academic Press, New York, p 257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Etienne Kolomoni Ngoy
    • 1
    Email author
  • I. M. D. Campbell
    • 1
  • R. G. Reid
    • 1
  • R. Paskaramoorthy
    • 1
  1. 1.DST/NRF Centre of Excellence in Strong Materials and RP/Composites Facility, School of Mechanical, Industrial and Aeronautical EngineeringUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations