Fabrication and characterization of novel bowknot-like CeO2 crystallites and applications for Methyl-orange Sensors
- 250 Downloads
- 11 Citations
Abstract
Bowknot-like CeO2 bundles crystals were successfully prepared from a single precursor via a thermal decomposition route. The precursor was synthesized by a hydrothermal reaction using Ce(NO3)3 · 6H2O with CO(NH2)2 at 150 °C in a water-glycerol complex solution. Glycerol plays a very important role for the formation of precursor bowknot-like structures. The morphology of the precursor was maintained during the heating process. The optical absorption spectrum indicates that the CeO2 dendrites have a direct band gap of 3.42 eV, which is mostly larger than values of bulk powders due to the quantum size effect. The electrochemical characters of the CeO2 bundles structures are studied by their investigation of cyclic voltammetry (CV). It was found that the CeO2 bundles can greatly improve the electron transfer ability.
Keywords
Ceria CeO2 Field Emission Scanning Electron Microscopy Methyl Orange Optical Absorption SpectrumNotes
Acknowledgement
This work was supported by a Grant-in-aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), the CREST program of the Japan Science and Technology Agency (JST), the National Natural Science Foundation of China (No. 50873042), the Natural Science Foundation of Jiangsu Province (No. 07KJA15011) and the Scientific Research Program of HuaiHai Institute of Technology (KQ08023, Z2008018). We are grateful to young and middle-aged academic leaders of “Blue and Green Blue Project” of the universities and colleges in Jiangsu Province. We are also grateful to the electron microscope and X-ray diffraction facilities of University of Science & Technology of China for assistance in XRD and SEM measurement.
References
- 1.Trovarelli A (1996) Catal Rev Sci Eng 38:439CrossRefGoogle Scholar
- 2.Inaba H, Tagawa H (1996) Solid State Ion 83:1CrossRefGoogle Scholar
- 3.Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) Chem Mater 19:1648CrossRefGoogle Scholar
- 4.Lunderg M, Skaerman B, Cesar F, Wallenberg LR (2002) Micropor Mesopor Mater 54:97CrossRefGoogle Scholar
- 5.Laha SC, Ryoo R (2003) Chem Commun 17:2138CrossRefGoogle Scholar
- 6.Beie HJ, Gnöich A (1991) Sensors Actuators B 4:393CrossRefGoogle Scholar
- 7.Jasinski P, Suzuki T, Anderson HU (2003) Sensors Actuators B 95:73CrossRefGoogle Scholar
- 8.Steele BCH (2000) Solid State Ion 129:95CrossRefGoogle Scholar
- 9.Nair JP, Wachtel E, Lubomirsky I, Fleig J, Maier J (2003) Adv Mater 15:2077CrossRefGoogle Scholar
- 10.Inaba H, Tagawa H (1996) Solid State Ion 83:1CrossRefGoogle Scholar
- 11.Qi RJ, Zhu YJ, Cheng GF, Huang YH (2005) Nanotechnology 16:2502CrossRefGoogle Scholar
- 12.Zhou F, Zhao XM, Xu H, Yuan CG (2007) J Phys Chem C 111:1651CrossRefGoogle Scholar
- 13.Carrettin S, Concepcion P, Corma A, Nieto JML, Puntes VF (2004) Angew Chem Int Ed 43:2538CrossRefGoogle Scholar
- 14.Kuiry SC, Patil SD, Deshpande S, Seal S (2005) J Phys Chem B 109:6936CrossRefGoogle Scholar
- 15.Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC (2005) J Phys Chem B 109:24380CrossRefGoogle Scholar
- 16.Zhou KB, Wang X, Sun XM, Peng Q, Li YD (2005) J Catal 229:206CrossRefGoogle Scholar
- 17.Wu GS, Xie T, Yuan XY, Cheng BC, Zhang LD (2004) Mater Res Bull 39:1023CrossRefGoogle Scholar
- 18.Yada M, Sakai S, Torikai T, Watari T, Fyruta S, Katsuki H (2004) Adv Mater 16:1222CrossRefGoogle Scholar
- 19.Sun CW, Li H, Wang ZX, Chen LQ, Huang XJ (2004) Chem Lett 133:662CrossRefGoogle Scholar
- 20.Yang R, Guo L (2005) J Mater Sci 40:1305. doi: https://doi.org/10.1007/s10853-005-6958-5 CrossRefGoogle Scholar
- 21.La RJ, Hu ZA, Li HL, Shang XL, Yang YY (2004) Mater Sci Eng A 368:145CrossRefGoogle Scholar
- 22.Han WQ, Wu LJ, Zhu YM (2005) J Am Chem Soc 127:12814CrossRefGoogle Scholar
- 23.Yang R, Guo L (2004) Chin J Inorg Chem 20:152Google Scholar
- 24.Yang SW, Gao L (2006) J Am Chem Soc 128:9330CrossRefGoogle Scholar
- 25.Guo ZY, Du FL, Cui ZL (2006) Inorg Chem 45:4167CrossRefGoogle Scholar
- 26.Sun CW, Sun J, Xiao GL, Zhang HR, Qiu XP, Li H, Chen LQ (2006) J Phys Chem B 110:13445CrossRefGoogle Scholar
- 27.Wang ZL, Feng XD (2003) J Phys Chem B 107:13563CrossRefGoogle Scholar
- 28.Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RM (2006) Chem Mater 18:50CrossRefGoogle Scholar
- 29.Huang S, Li L, Van der Biest O, Vleugels J (2005) Solid State Sci 5:539CrossRefGoogle Scholar
- 30.Zhang DE, Ni XM, Zheng HG, Zhang XJ, Song JM (2006) Solid State Sci 8:1920Google Scholar
- 31.Wu XD, Wu XD, Liang Q, Fan J, Weng D, Xie Z, We SQ (2007) Solid State Sci 9:636CrossRefGoogle Scholar
- 32.Wang SF, Gu F, Li CZ, Cao HM (2007) J Crys Grow 307:386CrossRefGoogle Scholar
- 33.Liao XH, Zhu JM, Zhu JJ, Xu JZ, Chen HY (2001) Chem Commun 10:937CrossRefGoogle Scholar