Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2388–2392 | Cite as

Preparation and properties of red phosphor CaO: Eu3+

  • Ming Kang
  • Xiaoming Liao
  • Yunqing Kang
  • Jun Liu
  • Rong Sun
  • Guangfu Yin
  • Zhongbing Huang
  • Yadong Yao
Article

Abstract

In this study, the co-precipitation method was adopted to synthesize red phosphor CaO: Eu3+. Sodium carbonate was chosen as the precipitator, and sodium dodecylbenzensulfonate as the surfactant. The structure, morphology, and spectroscopic properties of the samples were characterized by XRD, laser particle size analyzer, SEM, FT-IR, Raman, UV–Vis and PL-PLE spectra, respectively. The results indicated that the Eu3+ ion inhabited the site of Ca2+ as the luminescent center, and the crystal structure of cubic CaO remained unchanged. The particle size of the obtained product was 0.5–2 μm with smooth surface. There was a main intense band with a maximum at 250 nm, which was attributed to the charge transfer transition of Eu3+-O2− and the maximum emission wavelength is 592 nm, corresponding to magnetic dipole transitions 5D0 → 7F1 of Eu3+ in the excitation spectrum.

Keywords

Excitation Spectrum Vaterite Magnetic Dipole Transition Laser Particle Size Analyzer Crystal Field Transition 

References

  1. 1.
    Joly AG, Chen W, Zhang J, Wang S (2007) J Lumin 126:491CrossRefGoogle Scholar
  2. 2.
    Conga Y, Lia B, Leia B, Wanga X, Liua C, Liua J, Li W (2008) J Lumin 128:105CrossRefGoogle Scholar
  3. 3.
    Xiao X, Yan BJ (2007) Mater Lett 61:1649CrossRefGoogle Scholar
  4. 4.
    Jeong JH, Yang HK, Shim KS (2007) Appl Surf Sci 253:8273CrossRefGoogle Scholar
  5. 5.
    Fu J (2000) J Electron Solid-State Lett 3:350CrossRefGoogle Scholar
  6. 6.
    Park I, Kima Y Lee DJ (2007) J Mater Chem Phys 106:149CrossRefGoogle Scholar
  7. 7.
    Di W, Zhao X, Lu S (2007) J Solid State Chem 180:2478CrossRefGoogle Scholar
  8. 8.
    Uhlich D, Huppertz P, Wiechert DU, Justel T (2007) J Opt Mater 29:1505CrossRefGoogle Scholar
  9. 9.
    Liu G, Hong G, Wang J, Dong X (2007) J Alloys Compd 432:200CrossRefGoogle Scholar
  10. 10.
    Zhang H, Lü M, Xiu Z, Wang S (2007) J Mater Res Bull 42:1145CrossRefGoogle Scholar
  11. 11.
    Pan Y, Wu M, Su Q (2003) J Mater Res Bull 38:1537CrossRefGoogle Scholar
  12. 12.
    Lammers MJJ, Blasse G, Brixner LH (1986) J Mater Res Bull 21:529CrossRefGoogle Scholar
  13. 13.
    Srivastava SP, Singh RD (1971) J Phys Soc Jpn 31:615CrossRefGoogle Scholar
  14. 14.
    Ningthoujam RS, Sudarsan V, Kulshreshtha SK (2007) J Lumin 127:747CrossRefGoogle Scholar
  15. 15.
    Gao XR, Lei LX, Lv CG, Sun YM, Zheng HG, Cui YP (2008) J Solid State Chem 181:1776CrossRefGoogle Scholar
  16. 16.
    Liu X, Wang X (2007) Opt Mater 30:626CrossRefGoogle Scholar
  17. 17.
    Taboada S, Andrés de A, Sáez-Puche R (1998) J Alloys Compd 275–277:279CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ming Kang
    • 1
    • 2
  • Xiaoming Liao
    • 1
  • Yunqing Kang
    • 1
  • Jun Liu
    • 2
  • Rong Sun
    • 2
  • Guangfu Yin
    • 1
  • Zhongbing Huang
    • 1
  • Yadong Yao
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.Southwest University of Science and TechnologyMianyangChina

Personalised recommendations