Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 2143–2151 | Cite as

Studies of surface-modified wood flour/polypropylene composites

  • Yongcheng Zhang
  • Hossein Toghiani
  • Jilei Zhang
  • Yibin Xue
  • Charles U. PittmanJr.Email author
Article

Abstract

Wood flour (WF)/polypropylene (PP) composites have been made by extrusion and hot press compression molding. The composite water uptake and flexural properties were investigated. The composite fracture surfaces were studied by SEM. WF esterified with octanoyl chloride was used in WF/PP composites to improve the composites’ water resistance. Maleated polypropylene (MAPP) was also studied and compared with esterification by acid chlorides. Esterification by octanoyl chloride reduced the composite water uptake. However, the C8 chain is still not long enough to form effective entanglements with the PP matrix. So, despite enhancements in hydrophobic interactions, flexural strengths and flexural moduli decreased. MAPP (MW = 47000) polymer chains can entangle with the matrix polypropylene molecules. Therefore, when MAPP’s maleic anhydride functions esterify WF surface hydroxyls, improved water resistance and composite flexural properties were achieved. The modifier chain length is of critical importance and more important than the surface density of hydrophobic groups for improving WF–PP interfacial adhesion and composite mechanical performance.

Keywords

Flexural Strength Water Immersion Wood Flour Flexural Modulus Octanoyl 

Notes

Acknowledgements

This work was funded by Center for Advanced Vehicular Systems of Mississippi State University (“Hybrid composites for a hybrid car” project). This work was also partly supported by the Forest Products Laboratory at Mississippi State University. The SEM characterization was supported by MCL Follow-up Funding from Mississippi State University. The authors thank Mr. Dustin Black for performing water absorption and third-point bending measurements. The authors also thank Ms. Amanda M. Lawrence for her help in SEM characterization.

References

  1. 1.
    Clemons CM (2000) Proceedings of the 3rd international wood and natural fibre composites symposium, Kassel, GermanyGoogle Scholar
  2. 2.
    Magurno A (1999) Die Angewandte Makromolekulare Chemie 272(1):99CrossRefGoogle Scholar
  3. 3.
    Bledzki AK, Faruk O, Sperber VE (2006) Macromol Mater Eng 291(5):449. doi: https://doi.org/10.1002/mame.200600113 CrossRefGoogle Scholar
  4. 4.
    Tshabalala MA, Kingshott P, Vanlandingham MR, Plackett D (2003) J Appl Polym Sci 88:2828. doi: https://doi.org/10.1002/app.12142 CrossRefGoogle Scholar
  5. 5.
    Tserki V, Matzinos P, Kokkou S, Panayiotou C (2005) Compos, Part A 36:965. doi: https://doi.org/10.1016/j.compositesa.2004.11.010 CrossRefGoogle Scholar
  6. 6.
    Zhang C, Li KC, Simonsen J (2004) J Adhes Sci Technol 18:1603CrossRefGoogle Scholar
  7. 7.
    Ellis WD, O’Dell JL (1999) J Appl Polym Sci 73:2493CrossRefGoogle Scholar
  8. 8.
    Sèbe G, Tingaut P, Safoutchiama R, Pétraud M, Grelier S, Jéso BD (2004) Holzforschung 58:511. doi: https://doi.org/10.1515/HF.2004.078 CrossRefGoogle Scholar
  9. 9.
    Oksman K, Clemons C (1998) J Appl Polym Sci 67(9):1503CrossRefGoogle Scholar
  10. 10.
    Cantero G, Arbelaiz A, Mugika F, Valea A, Mondragon I (2003) J Reinf Plast Compos 22(1):37. doi: https://doi.org/10.1177/0731684403022001495 CrossRefGoogle Scholar
  11. 11.
    Kaci M, Cimmino S, Silvestre C, Duraccio D, Benhamida A, Zaidi L (2006) Macromol Mater Eng 291(7):869. doi: https://doi.org/10.1002/mame.200600003 CrossRefGoogle Scholar
  12. 12.
    Wu JS, Yu DM, Chan CM, Kim J, Mai YW (2000) J Appl Polym Sci 76:1000CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Pittman CU Jr, Toghiani H, Zhang J, Xue Y (2009) Compos Interfaces (accepted)Google Scholar
  14. 14.
    ASTM D 790-92Google Scholar
  15. 15.
    ASTM D 570-98Google Scholar
  16. 16.
    Wu Z, Pittman CU Jr, Gardner SD (1996) Carbon 34(1):59. doi: https://doi.org/10.1016/0008-6223(95)00135-2 CrossRefGoogle Scholar
  17. 17.
    Tsubokawa N, Kobayashi K, Sone Y (1988) J Polym Sci, Part A: Polym Chem 26:223. doi: https://doi.org/10.1002/pola.1988.080260122 CrossRefGoogle Scholar
  18. 18.
    Edmondson S, Osborne VL, Huck WTS (2004) Chem Soc Rev 33:14. doi: https://doi.org/10.1039/b210143m CrossRefGoogle Scholar
  19. 19.
    Kazayawoko M, Balatinecz JJ, Matuana LM (1999) J Mater Sci 34:6189. doi: https://doi.org/10.1023/A:1004790409158 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yongcheng Zhang
    • 1
  • Hossein Toghiani
    • 2
  • Jilei Zhang
    • 3
  • Yibin Xue
    • 4
    • 5
  • Charles U. PittmanJr.
    • 1
    Email author
  1. 1.Department of ChemistryMississippi State University Mississippi StateUSA
  2. 2.Dave C. Swalm School of Chemical EngineeringMississippi State University Mississippi StateUSA
  3. 3.Department of Forest ProductsMississippi State UniversityMississippi State USA
  4. 4.Center for Advanced Vehicular SystemsMississippi State University Mississippi StateUSA
  5. 5.Department of Mechanical and Aerospace EngineeringUtah State UniversityLoganUSA

Personalised recommendations