Journal of Materials Science

, Volume 44, Issue 8, pp 2007–2015 | Cite as

An automated testing machine for monitoring the evolution of fiber breaks

  • G. A. Holmes
  • Sheldon Wesson
  • W. G. McDonoughEmail author
  • J. H. Kim
  • A. Netravali
  • J. N. Walker
  • R. A. Johnson


A cooperative agreement between the National Institute of Standards and Technology (NIST) and the Textile Research Institute/Princeton (TRI/Princeton) has resulted in the development of an automated tensile testing machine for determining the interfacial shear strength (IFSS) as determined by the single fiber fragmentation (SFF) test. The imaging capability of this new machine permits the archiving of data for additional analyses as new data reduction methods are developed and provides a framework for the sharing of fragmentation data among researchers. To keep pace with the changing directions of composite micromechanics research, the new machine was extended to obtaining archival data on fiber fragmentation in 2D multifiber arrays by utilizing a new fiber placement device that allows for the precise placement of these arrays within the dogbone specimen.


Strain Increment Diglycidyl Ether Fiducial Mark Interfacial Shear Strength Fiber Break 


  1. 1.
    Holmes GA, Peterson RC, Hunston DL, McDonough WG, Schutte CL (2000) In: Schapery RA (ed) Time dependent and nonlinear effects in polymers and composites ASTM, p 98Google Scholar
  2. 2.
    Wagner HD, Steenbakkers LW (1989) J Mater Sci 24:3956. doi: CrossRefGoogle Scholar
  3. 3.
    van den Heuvel PWJ, Peijs T, Young RJ (2000) Composites Part A 31:165CrossRefGoogle Scholar
  4. 4.
    van den Heuvel PWJ, Wubbolts MK, Young RJ, Peijs T (1998) Composites Part A 29:1121CrossRefGoogle Scholar
  5. 5.
    van den Heuvel PWJ, Peijs T, Young RJ (1998) Compos Sci Technol 58:933CrossRefGoogle Scholar
  6. 6.
    van den Heuvel PWJ, Peijs T, Young RJ (1997) Compos Sci Technol 57:899CrossRefGoogle Scholar
  7. 7.
    van den Heuvel PWJ, Peijs T, Young RJ (1996) J Mater Sci Lett 15:1908CrossRefGoogle Scholar
  8. 8.
    van den Heuvel PWJ, van der Bruggen YJW, Peijs T (1996) Composites Part A 27:855CrossRefGoogle Scholar
  9. 9.
    Beyerlein IJ, Amer MS, Schadler LS, Phoenix SL (1998) Sci Eng Compos Mat 7:151Google Scholar
  10. 10.
    Li ZF, Grubb DT, Phoenix SL (1995) Compos Sci Technol 54:251CrossRefGoogle Scholar
  11. 11.
    Li ZF, Grubb DT, Phoenix SL (1994) J Mater Sci 13:1720. doi: Google Scholar
  12. 12.
    Favre JP, Auvray MH, CheneauHenry P, Galiotis C, Vlattas C, Paipetis A, Pegoraro M, Severini F, DiLandro L, Yuan LJ (1996) Polym Compos 17:937CrossRefGoogle Scholar
  13. 13.
    Chohan V, Galiotis C (1997) Compos Sci Technol 57:1089CrossRefGoogle Scholar
  14. 14.
    Holmes GA, McDonough WG (2002) In: Rasmussen BM, Pilato LA, Kliger HS (eds) Proceedings of the 47th international SAMPE symposium and exhibition—science of the advance materials and process engineering series. May 12, 47, p 1690Google Scholar
  15. 15.
    Holmes GA, Peterson RC, Hunston DL, McDonough WG (2007) Polym Compos 28:561CrossRefGoogle Scholar

Copyright information

© U.S. Government 2009

Authors and Affiliations

  • G. A. Holmes
    • 1
  • Sheldon Wesson
    • 2
    • 6
  • W. G. McDonough
    • 1
    Email author
  • J. H. Kim
    • 1
  • A. Netravali
    • 3
  • J. N. Walker
    • 4
  • R. A. Johnson
    • 5
  1. 1.Polymers Division, Characterization and Methods Development GroupNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.TRI/PrincetonPrincetonUSA
  3. 3.Department of Textiles & ApparelCornell UniversityIthacaUSA
  4. 4.Electrim CorpPrincetonUSA
  5. 5.Exxon Mobil Research and EngineeringFairfaxUSA
  6. 6.Adherent TechnologiesAlbuquerqueUSA

Personalised recommendations