Journal of Materials Science

, Volume 44, Issue 8, pp 2038–2045 | Cite as

Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime

  • A. P. KirchheimEmail author
  • V. Fernàndez-Altable
  • P. J. M. Monteiro
  • D. C. C. Dal Molin
  • I. Casanova


Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.


Lime Gypsum Field Emission Scanning Electron Microscopy Ettringite Cement Hydration 



The authors acknowledge the financial support of CAPES (Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Ministério da Educação—Brasil) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Ministério da Ciência e Técnologia—Brasil). Also we are grateful to the staff of Electron Microscope Laboratory at University of California, Berkeley for helping in the acquisition of the images, and Oscar Reyes, from Technical University of Catalonia (UPC) on the rheological measurements. The research was supported by the National Science Foundation (grant CMS-981275) and KAUST.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Mathur PC (2007) Study of cementitios materials using transmission electron microscopy. PhD Thesis, Faculté des sciences et techniques de l’ingénieur, École Polytechique Fédérale de Lausanne, Lausanne, p 237Google Scholar
  2. 2.
    Goetz-Neunhoeffer F, Neubauer J et al (2006) Cem Concr Res 36(1):65CrossRefGoogle Scholar
  3. 3.
    Mehta PK, Monteiro PJM (2006) Concrete—microstructure, properties and materials. McGraw-Hill, New YorkGoogle Scholar
  4. 4.
    Bishop M, Bott S, Barron A (2003) Chem Mater 15:3074CrossRefGoogle Scholar
  5. 5.
    Wachtler H-J, Uschold TV et al (1986) Silikattechnick 4:127Google Scholar
  6. 6.
    Massazza F, Dalmon M (1992) In: 9th international congress chemical cement, New Delhi, India, p 383Google Scholar
  7. 7.
    Spierings GACM, Stein HN (1976) Cem Concr Res 6(2):265–272CrossRefGoogle Scholar
  8. 8.
    Maki I (1973) Cem Concr Res 3(3):295–313CrossRefGoogle Scholar
  9. 9.
    Regourd M, Gunier A (1975) Revue des Matériaux de Constr 695:201–215Google Scholar
  10. 10.
    Boikova AI, Domansky AI (1977) Cem Concr Res 7(5):483–492CrossRefGoogle Scholar
  11. 11.
    Taylor HFW (1990) Cement chemistry. Academic Press, LondonGoogle Scholar
  12. 12.
    Regourd M, Hornain H et al (1980) In: 7th international congress chemical cement, Paris, p 477Google Scholar
  13. 13.
    Odler I, Wonnemann R (1983) Cem Concr Res 13(6):771CrossRefGoogle Scholar
  14. 14.
    Samet B, Sarkar SL (1997) Cem Concr Res 27(3):369CrossRefGoogle Scholar
  15. 15.
    Stephan D, Wistuba S (2006) Cem Concr Res 36(11):2011CrossRefGoogle Scholar
  16. 16.
    Neville AM (1997) Properties of concrete. Pearson Education Limited, Edinburgh Gate, HarlowGoogle Scholar
  17. 17.
    Hamad BS (1995) Adv Cem Bas Mater 2(4):161CrossRefGoogle Scholar
  18. 18.
    Nachbaur L, Mutin JC et al (2001) Cem Concr Res 31(2):183CrossRefGoogle Scholar
  19. 19.
    Schmidt G, Schlegel E (2002) Cem Concr Res 32(4):593CrossRefGoogle Scholar
  20. 20.
    Sun Z, Voigt T et al (2006) Cem Concr Res 36(2):278CrossRefGoogle Scholar
  21. 21.
    Ghorab HY, Abou El Fetouh SH et al (1988) Zem Kalk Gips 12:624Google Scholar
  22. 22.
    Glasser FP, Marinho MB (1984) Proc Br Ceram Soc 35:221Google Scholar
  23. 23.
    Juenger MCG, Jennings HM (2001) ACI Mater J 98(3):251Google Scholar
  24. 24.
    Gebhardt R (1995) Cem Concr Aggreg 17(2):145CrossRefGoogle Scholar
  25. 25.
    Burrows R (1999) The visible and invisible cracking of concrete. ACI monograph No. 11. American Concrete Institute, Farmington Hills, MIGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. P. Kirchheim
    • 1
    • 2
    Email author
  • V. Fernàndez-Altable
    • 3
  • P. J. M. Monteiro
    • 2
  • D. C. C. Dal Molin
    • 1
  • I. Casanova
    • 4
  1. 1.Department of Civil EngineeringFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Laboratory of Construction MaterialsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Center for Research in Nanoengineering and School of Civil EngineeringTechnical University of Catalonia (UPC)Barcelona, CataloniaSpain

Personalised recommendations