Journal of Materials Science

, Volume 44, Issue 7, pp 1757–1763 | Cite as

Single crystal growth in PMN-PT and PMN-PZT

  • Thomas RichterEmail author
  • Carsten Schuh
  • Ender Suvaci
  • Ralf Moos


Single crystal growth of lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN-32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN-37PT-21PZ) ceramics via templated grain growth (TGG) was investigated. (001)- and (111)-oriented BaTiO3 (BT) single crystals and (001)-oriented SrTiO3 (ST) single crystals (of approximately 2.5 × 2.5 × 1 mm) were utilized as seeds for the growth experiments. The piezoelectric single crystals were produced in a process that involves at first hot pressing of single crystal in cold isostatically pressed ceramics followed by subsequent sintering of the samples. Growth of (001)-oriented single crystals with BT seeds was observed in both PMN-32PT and PMN-37PT-21PZ matrices. The measured growth lengths were up to 140 and 65 μm, respectively. The grown (001)-oriented single crystals grown were rectangular. The measured growth lengths of the pyramidal-shaped (111) BT single crystals were up to 1 mm, which is much larger than the growth lengths of the (001) single crystals. Experiments on (001) ST-seeded single crystals were not successful. No single crystal growth was observed due to the dissolution of the ST single crystals in the PMN-PZT matrix. The differences were explained by defect-chemical considerations.


BaTiO3 Sinter Time Growth Length Single Crystal Growth Subsequent Sinter 



This work was supported by the German Federal Ministry of Education and Research under BMBF grant number 03X4001A.


  1. 1.
    Khan A, Meschke FA, Li T, Scotch AM, Chan HM, Harmer MP (1999) J Am Ceram Soc 82:2958CrossRefGoogle Scholar
  2. 2.
    Xu Z, Chen F, Xi Z, Li Z, Cao L, Feng Y, Yao X (2004) Ceram Int 30:1777CrossRefGoogle Scholar
  3. 3.
    Du XH, Zheng J, Belegundu U, Uchino K (1998) Appl Phys Lett 72:2421CrossRefGoogle Scholar
  4. 4.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press Inc., LondonGoogle Scholar
  5. 5.
    Richter T, Denneler S, Schuh C, Suvaci E, Moos R (2008) J Am Ceram Soc 91:929CrossRefGoogle Scholar
  6. 6.
    Gorzkowski EP, Chan HM, Harmer MP (2006) J Am Ceram Soc 89:856CrossRefGoogle Scholar
  7. 7.
    King PT, Gorzkowski EP, Scotch AM, Rockosi DJ, Chan HM, Harmer MP (2003) J Am Ceram Soc 86:2182CrossRefGoogle Scholar
  8. 8.
    Sabolsky EM, Messing GL, Trolier-McKinstry S (2001) J Am Ceram Soc 84:2507CrossRefGoogle Scholar
  9. 9.
    Li T, Wu S, Khan A, Scotch AM, Chan HM, Harmer MP (1999) J Mater Res 14:3189CrossRefGoogle Scholar
  10. 10.
    Kwon S, Sabolsky EM, Messing GL, Trolier-McKinstry S (2005) J Am Ceram Soc 88:312CrossRefGoogle Scholar
  11. 11.
    Khan A, Carpenter DT, Scotch AM, Chan HM, Harmer MP (2001) J Mater Res 16:694CrossRefGoogle Scholar
  12. 12.
    Kwon S, Sabolsky EM, Messing GL (2001) J Am Ceram Soc 84:648CrossRefGoogle Scholar
  13. 13.
    Cho SJ, Kang SJL, Yoon DN (1986) Metall Trans A 17:2175CrossRefGoogle Scholar
  14. 14.
    Lay KW (1968) J Am Ceram Soc 51:373CrossRefGoogle Scholar
  15. 15.
    Hennings DFK, Jannsen R, Reyen PJL (1987) J Am Ceram Soc 70:23CrossRefGoogle Scholar
  16. 16.
    Seabaugh M, Suvaci E, Brahmaroutu B, Messing GL (2000) Interface Sci 8:257CrossRefGoogle Scholar
  17. 17.
    Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Ylmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M, Oh KS (2004) Crit Rev Solid State Mater Sci 29:45CrossRefGoogle Scholar
  18. 18.
    Rehrig PW, Messing GL, Trolier-McKinstry S (2000) J Am Ceram Soc 83:2654CrossRefGoogle Scholar
  19. 19.
    Nicholson FA (1968) J Am Ceram Soc 51:468CrossRefGoogle Scholar
  20. 20.
    Brook RJ (1969) J Am Ceram Soc 52:567CrossRefGoogle Scholar
  21. 21.
    Moos R, Bischoff T, Menesklou W, Härdtl KH (1997) J Mater Sci 32:4247. doi: CrossRefGoogle Scholar
  22. 22.
    Moos R, Härdtl KH (1995) J Am Ceram Soc 78:2569CrossRefGoogle Scholar
  23. 23.
    Moos R, Härdtl KH (1997) J Am Ceram Soc 80:2549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas Richter
    • 1
    Email author
  • Carsten Schuh
    • 2
  • Ender Suvaci
    • 3
  • Ralf Moos
    • 4
  1. 1.PowertrainContinental AGRegensburgGermany
  2. 2.Ceramics DepartmentSiemens AG, Corporate TechnologyMunichGermany
  3. 3.Department of Materials Science and EngineeringAnadolu UniversityEskisehirTurkey
  4. 4.Functional Materials LaboratoryUniversity of BayreuthBayreuthGermany

Personalised recommendations