Journal of Materials Science

, Volume 44, Issue 7, pp 1687–1703

Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide

  • Dmitry Naumenko
  • Vladimir Shemet
  • Lorenz Singheiser
  • Willem Josef Quadakkers
Interface Science in Thermal Barrier Coatings

Abstract

The effect of the thermally grown oxide (TGO) formation on the lifetime of the thermal barrier coatings (TBC) with MCrAlY-bondcoats (BC) is reviewed. A number of factors affecting the TGO-formation and TBC-failure are discussed including the coating microstructure, geometrical (coating roughness and thickness) and processing parameters. Under given testing conditions for a specific EB-PVD-TBC-system forming a flat, uniform alumina TGO a critical TGO-thickness for TBC-failure can be defined. This TGO-morphology is, however, not necessarily optimum for obtaining long TBC-lifetime, which can be extended by formation of TGO’s with an uneven TGO/BC interface. In contrast, APS-TBC-systems are prone to formation of intrinsically inhomogeneous TGO-morphologies. This is attributed to non-uniform depletion of Y and Al underneath rough MCrAlY-surfaces as well as due to the commonly observed repeated-cracking/re-growth of the TGO during temperature cycling. The latter phenomenon depends on the exposure temperature and the mechanical properties of the APS-TBC. In both types of TBC-systems the TGO-formation and TBC-lifetime appear to be very sensitive to the manufacturing parameters, such as vacuum quality during bondcoat spraying and temperature regime of the bondcoat vacuum heat-treatment.

References

  1. 1.
    Goward GW (1998) Surf Coat Technol 108–109(1–3):73CrossRefGoogle Scholar
  2. 2.
    Gleeson B (2006) J Propul Power 22–2:375CrossRefGoogle Scholar
  3. 3.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  4. 4.
    Quadakkers WJ, Tyagi AK, Clemens D, Anton R, Singheiser L (1999) In: Hampikian JM, Dahotre NB (eds) Elevated temperature coatings: surface and technology III. The Minerals, Metals & Materials Society, pp 119–130Google Scholar
  5. 5.
    Niranatlumpong P, Ponton CB, Evans HE (2000) Oxid Met 53(3–4):241CrossRefGoogle Scholar
  6. 6.
    Busso EP, Wright L, Evans HE et al (2007) Acta Mater 55:1491CrossRefGoogle Scholar
  7. 7.
    Tolpygo VK, Clarke DR, Murphy KS (2001) Surf Coat Technol 146–147:124CrossRefGoogle Scholar
  8. 8.
    Evans HE, Strawbridge A, Carolan RA, Ponton CB (1997) Mater Sci Eng A 225:1CrossRefGoogle Scholar
  9. 9.
    Quadakkers WJ, Shemet V, Sebold D, Anton R, Wessel E, Singheiser L (2005) Surf Coat Technol 199(1):77CrossRefGoogle Scholar
  10. 10.
    Janakiraman R, Meier GH, Pettit FS (1999) Metall Mater Trans A 30:2905CrossRefGoogle Scholar
  11. 11.
    Pint BA (2003) J Amer Ceram Soc 86(4):686Google Scholar
  12. 12.
    Nijdam TJ, Marijnissen GH, Vergeldt E, Kloosterman AB, Sloof WG (2006) Oxid Met 66:269CrossRefGoogle Scholar
  13. 13.
    Schulz U, Menzebach M, Leyens C, Yang YQ (2001) Surf Coat Technol 146–147(5/6):117CrossRefGoogle Scholar
  14. 14.
    Subanovic M, Sebold D, Vassen R, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):463CrossRefGoogle Scholar
  15. 15.
    Wessel E, Kochubey V, Naumenko D, Niewolak L, Singheiser L, Quadakkers WJ (2004) Scripta Mater 51(10):987CrossRefGoogle Scholar
  16. 16.
    Mercer C, Faulhaber S, Yao N, McIlwrath K, Fabrichnaya O (2006) Surf Coat Technol 201:1495CrossRefGoogle Scholar
  17. 17.
    Evans AG, Crumley GB, Demaray RE (1983) Oxid Met 20(5/6):193CrossRefGoogle Scholar
  18. 18.
    Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ (2007) Metall Mater Trans 38A:2974CrossRefGoogle Scholar
  19. 19.
    Hsueh CH, Haynes JA, Lance MJ et al (1999) J Amer Ceram Soc 82(4):1073CrossRefGoogle Scholar
  20. 20.
    Tang F, Schoenung J (2005) Scripta Mater 52:905CrossRefGoogle Scholar
  21. 21.
    Ahrens M, Vaßen R, Stoever D (2002) Surf Coat Technol 161:26CrossRefGoogle Scholar
  22. 22.
    Trunova O, Beck T, Herzog R, Steinbrech RW, Singheiser L (2008) Surf Coat Technol 202:5027Google Scholar
  23. 23.
    Fox P, Tatlock GJ (1989) Mater Sci Technol 5:816Google Scholar
  24. 24.
    Czech N, Schmitz F, Stamm W (1994) Surf Coat Technol 68–69:17CrossRefGoogle Scholar
  25. 25.
    Massalski TB (1996) ASM binary alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  26. 26.
    Achar DRG, Munoz-Arroyo R, Singheiser L, Quadakkers WJ (2004) Surf Coat Technol 187:272CrossRefGoogle Scholar
  27. 27.
    Muñoz-Arroyo R, Clemens D, Tietz F, Anton R, Quadakkers J, Singheiser L (2001) Mater Sci Forum 369–372:165CrossRefGoogle Scholar
  28. 28.
    Täck U (2004) The influence of cobalt and rhenium on the behaviour of MCrAlY coatings (PhD thesis) Tech. Univ. Freiberg 25:151, 169Google Scholar
  29. 29.
    Toscano J, Gil A, Hüttel T, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2007) Surf Coat Technol 202:603CrossRefGoogle Scholar
  30. 30.
    Lechner C, Seume J (eds) (2003) Stationaere Gasturbinen. Springer-Verlag, Berlin Heidelberg, Germany, p 749Google Scholar
  31. 31.
    Jansson B, Schalin M, Selleby M, Sundaman B (1993) In: Bale CW, Irins GA (eds) Computer software in chemical and extractive metallurgy. Canadian Institute of Metals, Quebec, p 57Google Scholar
  32. 32.
    Saunders N (2000) Ni-DATA information. Thermotech Ltd., Surrey Technology Centre, Surrey, UKGoogle Scholar
  33. 33.
    Echsler H, Renusch D, Schütze M (2004) Mater Sci Technol 20:307CrossRefGoogle Scholar
  34. 34.
    Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H (1989) Oxid Met 32(12):67CrossRefGoogle Scholar
  35. 35.
    Pint BA, Martin JR, Hobbs LW (1993) Oxid Met 39:167CrossRefGoogle Scholar
  36. 36.
    Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17(5/6):429CrossRefGoogle Scholar
  37. 37.
    Karadge M, Zhao X, Preuss M, Xiao P (2006) Scripta Mater 54:639CrossRefGoogle Scholar
  38. 38.
    Toscano J, Wessel E, Vassen R, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):501CrossRefGoogle Scholar
  39. 39.
    Kofstad P (1988) High temperature corrosion. Elsevier, LondonGoogle Scholar
  40. 40.
    Yanar NM, Pettit FS, Meier GH (2006) Metall Mater Trans 37A:1563CrossRefGoogle Scholar
  41. 41.
    Gil A, Shemet V, Vassen R, Subanovic M, Toscano J, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3824CrossRefGoogle Scholar
  42. 42.
    Toscano J, Vaßen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3906CrossRefGoogle Scholar
  43. 43.
    Nijdam TJ, Sloof WG (2008) Oxid Met 69:1CrossRefGoogle Scholar
  44. 44.
    Gudmundsson B, Jacobson BE (1989) Thin Solid Films 173(1):99CrossRefADSGoogle Scholar
  45. 45.
    Nijdam TJ, Jeurgens LPH, Chen JH, Sloof WG (2005) Oxid Met 64(5/6):355CrossRefGoogle Scholar
  46. 46.
    Schulz U, Bernardi O, Ebach-Stahl A et al (2008) Surf Coat Technol 203:160CrossRefGoogle Scholar
  47. 47.
    Lau H, Leyens C, Schulz U, Friedrich C (2003) Surf Coat Technol 165:217CrossRefGoogle Scholar
  48. 48.
    Davis JR (ed) (1997) Heat resistant materials, ASM specialty handbook. ASM International, Materials Park, OH, p 305Google Scholar
  49. 49.
    Ajdelsztajn L, Hulbert D, Mukherjeea A, Schoenung JM (2007) Surf Coat Technol 201:9462CrossRefGoogle Scholar
  50. 50.
    Wasilkowska A, Bartsch M, Messerschmidt U et al (2003) J Mater Process Technol 133:218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dmitry Naumenko
    • 1
  • Vladimir Shemet
    • 1
  • Lorenz Singheiser
    • 1
  • Willem Josef Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich GmbHJuelichGermany

Personalised recommendations