Journal of Materials Science

, Volume 44, Issue 7, pp 1687–1703 | Cite as

Failure mechanisms of thermal barrier coatings on MCrAlY-type bondcoats associated with the formation of the thermally grown oxide

  • Dmitry NaumenkoEmail author
  • Vladimir Shemet
  • Lorenz Singheiser
  • Willem Josef Quadakkers
Interface Science in Thermal Barrier Coatings


The effect of the thermally grown oxide (TGO) formation on the lifetime of the thermal barrier coatings (TBC) with MCrAlY-bondcoats (BC) is reviewed. A number of factors affecting the TGO-formation and TBC-failure are discussed including the coating microstructure, geometrical (coating roughness and thickness) and processing parameters. Under given testing conditions for a specific EB-PVD-TBC-system forming a flat, uniform alumina TGO a critical TGO-thickness for TBC-failure can be defined. This TGO-morphology is, however, not necessarily optimum for obtaining long TBC-lifetime, which can be extended by formation of TGO’s with an uneven TGO/BC interface. In contrast, APS-TBC-systems are prone to formation of intrinsically inhomogeneous TGO-morphologies. This is attributed to non-uniform depletion of Y and Al underneath rough MCrAlY-surfaces as well as due to the commonly observed repeated-cracking/re-growth of the TGO during temperature cycling. The latter phenomenon depends on the exposure temperature and the mechanical properties of the APS-TBC. In both types of TBC-systems the TGO-formation and TBC-lifetime appear to be very sensitive to the manufacturing parameters, such as vacuum quality during bondcoat spraying and temperature regime of the bondcoat vacuum heat-treatment.


Oxide Scale HVOF Bond Coat Thermal Barrier Coating Thermally Grown Oxide 



The authors are grateful to the following colleagues in the Institute for Energy Research of the Forschungszentrum Jülich for assistance in the materials procurement and experimental work: R. Vassen, K·H. Rauwald, H. Cosler, E. Wessel, M. Subanovic, and J. Toscano. Part of the present work was funded by the German Research Foundation (Grant No. NA-615-1) and German federal ministry for economy and technology (Grant No. 0326888D).


  1. 1.
    Goward GW (1998) Surf Coat Technol 108–109(1–3):73CrossRefGoogle Scholar
  2. 2.
    Gleeson B (2006) J Propul Power 22–2:375CrossRefGoogle Scholar
  3. 3.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Prog Mater Sci 46:505CrossRefGoogle Scholar
  4. 4.
    Quadakkers WJ, Tyagi AK, Clemens D, Anton R, Singheiser L (1999) In: Hampikian JM, Dahotre NB (eds) Elevated temperature coatings: surface and technology III. The Minerals, Metals & Materials Society, pp 119–130Google Scholar
  5. 5.
    Niranatlumpong P, Ponton CB, Evans HE (2000) Oxid Met 53(3–4):241CrossRefGoogle Scholar
  6. 6.
    Busso EP, Wright L, Evans HE et al (2007) Acta Mater 55:1491CrossRefGoogle Scholar
  7. 7.
    Tolpygo VK, Clarke DR, Murphy KS (2001) Surf Coat Technol 146–147:124CrossRefGoogle Scholar
  8. 8.
    Evans HE, Strawbridge A, Carolan RA, Ponton CB (1997) Mater Sci Eng A 225:1CrossRefGoogle Scholar
  9. 9.
    Quadakkers WJ, Shemet V, Sebold D, Anton R, Wessel E, Singheiser L (2005) Surf Coat Technol 199(1):77CrossRefGoogle Scholar
  10. 10.
    Janakiraman R, Meier GH, Pettit FS (1999) Metall Mater Trans A 30:2905CrossRefGoogle Scholar
  11. 11.
    Pint BA (2003) J Amer Ceram Soc 86(4):686CrossRefGoogle Scholar
  12. 12.
    Nijdam TJ, Marijnissen GH, Vergeldt E, Kloosterman AB, Sloof WG (2006) Oxid Met 66:269CrossRefGoogle Scholar
  13. 13.
    Schulz U, Menzebach M, Leyens C, Yang YQ (2001) Surf Coat Technol 146–147(5/6):117CrossRefGoogle Scholar
  14. 14.
    Subanovic M, Sebold D, Vassen R, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):463CrossRefGoogle Scholar
  15. 15.
    Wessel E, Kochubey V, Naumenko D, Niewolak L, Singheiser L, Quadakkers WJ (2004) Scripta Mater 51(10):987CrossRefGoogle Scholar
  16. 16.
    Mercer C, Faulhaber S, Yao N, McIlwrath K, Fabrichnaya O (2006) Surf Coat Technol 201:1495CrossRefGoogle Scholar
  17. 17.
    Evans AG, Crumley GB, Demaray RE (1983) Oxid Met 20(5/6):193CrossRefGoogle Scholar
  18. 18.
    Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ (2007) Metall Mater Trans 38A:2974CrossRefGoogle Scholar
  19. 19.
    Hsueh CH, Haynes JA, Lance MJ et al (1999) J Amer Ceram Soc 82(4):1073CrossRefGoogle Scholar
  20. 20.
    Tang F, Schoenung J (2005) Scripta Mater 52:905CrossRefGoogle Scholar
  21. 21.
    Ahrens M, Vaßen R, Stoever D (2002) Surf Coat Technol 161:26CrossRefGoogle Scholar
  22. 22.
    Trunova O, Beck T, Herzog R, Steinbrech RW, Singheiser L (2008) Surf Coat Technol 202:5027CrossRefGoogle Scholar
  23. 23.
    Fox P, Tatlock GJ (1989) Mater Sci Technol 5:816CrossRefGoogle Scholar
  24. 24.
    Czech N, Schmitz F, Stamm W (1994) Surf Coat Technol 68–69:17CrossRefGoogle Scholar
  25. 25.
    Massalski TB (1996) ASM binary alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  26. 26.
    Achar DRG, Munoz-Arroyo R, Singheiser L, Quadakkers WJ (2004) Surf Coat Technol 187:272CrossRefGoogle Scholar
  27. 27.
    Muñoz-Arroyo R, Clemens D, Tietz F, Anton R, Quadakkers J, Singheiser L (2001) Mater Sci Forum 369–372:165CrossRefGoogle Scholar
  28. 28.
    Täck U (2004) The influence of cobalt and rhenium on the behaviour of MCrAlY coatings (PhD thesis) Tech. Univ. Freiberg 25:151, 169Google Scholar
  29. 29.
    Toscano J, Gil A, Hüttel T, Wessel E, Naumenko D, Singheiser L, Quadakkers WJ (2007) Surf Coat Technol 202:603CrossRefGoogle Scholar
  30. 30.
    Lechner C, Seume J (eds) (2003) Stationaere Gasturbinen. Springer-Verlag, Berlin Heidelberg, Germany, p 749Google Scholar
  31. 31.
    Jansson B, Schalin M, Selleby M, Sundaman B (1993) In: Bale CW, Irins GA (eds) Computer software in chemical and extractive metallurgy. Canadian Institute of Metals, Quebec, p 57Google Scholar
  32. 32.
    Saunders N (2000) Ni-DATA information. Thermotech Ltd., Surrey Technology Centre, Surrey, UKGoogle Scholar
  33. 33.
    Echsler H, Renusch D, Schütze M (2004) Mater Sci Technol 20:307CrossRefGoogle Scholar
  34. 34.
    Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H (1989) Oxid Met 32(12):67CrossRefGoogle Scholar
  35. 35.
    Pint BA, Martin JR, Hobbs LW (1993) Oxid Met 39:167CrossRefGoogle Scholar
  36. 36.
    Reddy KPR, Smialek JL, Cooper AR (1982) Oxid Met 17(5/6):429CrossRefGoogle Scholar
  37. 37.
    Karadge M, Zhao X, Preuss M, Xiao P (2006) Scripta Mater 54:639CrossRefGoogle Scholar
  38. 38.
    Toscano J, Wessel E, Vassen R, Naumenko D, Singheiser L, Quadakkers WJ (2008) Mater Corros 59(6):501CrossRefGoogle Scholar
  39. 39.
    Kofstad P (1988) High temperature corrosion. Elsevier, LondonGoogle Scholar
  40. 40.
    Yanar NM, Pettit FS, Meier GH (2006) Metall Mater Trans 37A:1563CrossRefGoogle Scholar
  41. 41.
    Gil A, Shemet V, Vassen R, Subanovic M, Toscano J, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3824CrossRefGoogle Scholar
  42. 42.
    Toscano J, Vaßen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Surf Coat Technol 201:3906CrossRefGoogle Scholar
  43. 43.
    Nijdam TJ, Sloof WG (2008) Oxid Met 69:1CrossRefGoogle Scholar
  44. 44.
    Gudmundsson B, Jacobson BE (1989) Thin Solid Films 173(1):99CrossRefGoogle Scholar
  45. 45.
    Nijdam TJ, Jeurgens LPH, Chen JH, Sloof WG (2005) Oxid Met 64(5/6):355CrossRefGoogle Scholar
  46. 46.
    Schulz U, Bernardi O, Ebach-Stahl A et al (2008) Surf Coat Technol 203:160CrossRefGoogle Scholar
  47. 47.
    Lau H, Leyens C, Schulz U, Friedrich C (2003) Surf Coat Technol 165:217CrossRefGoogle Scholar
  48. 48.
    Davis JR (ed) (1997) Heat resistant materials, ASM specialty handbook. ASM International, Materials Park, OH, p 305Google Scholar
  49. 49.
    Ajdelsztajn L, Hulbert D, Mukherjeea A, Schoenung JM (2007) Surf Coat Technol 201:9462CrossRefGoogle Scholar
  50. 50.
    Wasilkowska A, Bartsch M, Messerschmidt U et al (2003) J Mater Process Technol 133:218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dmitry Naumenko
    • 1
    Email author
  • Vladimir Shemet
    • 1
  • Lorenz Singheiser
    • 1
  • Willem Josef Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich GmbHJuelichGermany

Personalised recommendations