Advertisement

Journal of Materials Science

, Volume 44, Issue 8, pp 1977–1986 | Cite as

Effect of impurities on characteristics of ZrO2 and ZnO ceramic powders produced by spray pyrolysis

  • N. Jakic
  • J. Gregory
  • M. Eslamian
  • N. AshgrizEmail author
Article

Abstract

Previously it was observed that addition of impurities to a precursor solution may alter the size and morphology of the particles produced by spray pyrolysis. To investigate this further, the spray pyrolysis technique was used to prepare zirconia (ZrO2) and zinc oxide (ZnO) ceramic powders, with addition of slight amounts of NaCl in various concentrations. The results show an increase in the percentage of nondisrupted particles which corresponds to an increase in the weight percentage of NaCl in the precursor in ZrO2 powder produced at 400 °C. This effect is not repeated in ZnO powder produced at 400 °C, as the addition of NaCl to the precursor results in the disruption of individual particles into much smaller particles. As far as the morphology and strength of particles are concerned, it is concluded that the addition of NaCl to the precursor solution has a beneficiary effect on the morphology of ZrO2 particles and an adverse effect on ZnO particles, both of which are negated at a higher reactor temperature of 600 °C.

Keywords

Precursor Solution Spray Pyrolysis Zinc Oxide Zinc Nitrate Hollow Particle 

References

  1. 1.
    Scott AJ, Nimmo W, Scott R et al (2008) J Mater Sci 43(18):6353. doi: https://doi.org/10.1007/s10853-008-2911-8 CrossRefGoogle Scholar
  2. 2.
    Ramirez EB, Huanosta A, Sebastian JP et al (2007) J Mater Sci 42(3):901. doi: https://doi.org/10.1007/s10853-006-0004-0 CrossRefGoogle Scholar
  3. 3.
    Eslamian M, Ashgriz N (2006) Powder Technol 167(17):149CrossRefGoogle Scholar
  4. 4.
    Liu T-Q, Sakurai O, Mizutani N, Kato M (1986) J Mater Sci 21:3698. doi: https://doi.org/10.1007/BF00553822 CrossRefGoogle Scholar
  5. 5.
    Ju SH, Kim DY, Jo EB et al (2007) J Mater Sci 42(14):5369. doi: https://doi.org/10.1007/s10853-006-0903-0 CrossRefGoogle Scholar
  6. 6.
    Krishna R, Haranath D, Singh SP et al (2007) J Mater Sci 42:10047. doi: https://doi.org/10.1007/s10853-007-2053-4 CrossRefGoogle Scholar
  7. 7.
    Ramos-Brito F, Garcia-Hipolito M, Alejo-Armenta CA et al (2008) J Mater Sci 43(13):4527. doi: https://doi.org/10.1007/s10853-008-2644-8 CrossRefGoogle Scholar
  8. 8.
    Attar AS, Ghamsari MS, Hajiesmaeilbaigi F et al (2008) J Mater Sci 43(5):1723. doi: https://doi.org/10.1007/s10853-007-2244-z CrossRefGoogle Scholar
  9. 9.
    Tani T, Madler L, Pratsinis SE (2002) J Nanopart Res 4:337CrossRefGoogle Scholar
  10. 10.
    Poondi D, Dobbins T, Singh J (2000) J Mater Sci 35:6237. doi: https://doi.org/10.1023/A:1026701915796 CrossRefGoogle Scholar
  11. 11.
    Fatemi DJ, Harris VG, Browning VM et al (1998) J Appl Phys 83:6867CrossRefGoogle Scholar
  12. 12.
    Yin S, Akita SG, Shinozaki M et al (2008) J Mater Sci 43(7):2234. doi: https://doi.org/10.1007/s10853-007-2070-3 CrossRefGoogle Scholar
  13. 13.
    Ming Q, Nersesyan MD, Richardson JT et al (2000) J Mater Sci 35:3599. doi: https://doi.org/10.1023/A:1004821831693 CrossRefGoogle Scholar
  14. 14.
    Eslamian M, Ashgriz N (2009) In: Smit LJ, Van Dijk JH (eds) Powder metallurgy research trends. Nova Science Publishers, New YorkGoogle Scholar
  15. 15.
    Piconi C, Maccauro G (1999) Biomaterials 20:1CrossRefGoogle Scholar
  16. 16.
    Manicone PF, Iometti PR, Raffaelli L (2007) J Dent 35(11):819CrossRefGoogle Scholar
  17. 17.
    Chawla HS, Mathur VP, Gauba K, Goyal A (2001) J Indian Soc Pedod Prev Dent 19(3):107Google Scholar
  18. 18.
    Jayanthi GV, Zhang SC, Messing GL (1993) Aerosol Sci Technol 19:478CrossRefGoogle Scholar
  19. 19.
    Eslamian M, Ashgriz N (2006) Can J Chem Eng 84(5):581CrossRefGoogle Scholar
  20. 20.
    Chau A, Eslamian M, Ashgriz N (2008) Part Part Syst Charact 25:183CrossRefGoogle Scholar
  21. 21.
    Eslamian M, Ahmed M, Ashgriz N (2006) Nanotechnology 17:1674CrossRefGoogle Scholar
  22. 22.
    Eslamian M, Ahmed M, Ashgriz N (2009) Dry Technol 27(3):3CrossRefGoogle Scholar
  23. 23.
    Milosevic O, Uskokovic D, Karanovic LJ, Tomasevic-Canovic M, Trontelj M (1993) J Mater Sci 28:5211. doi: https://doi.org/10.1007/BF00570066 CrossRefGoogle Scholar
  24. 24.
    Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83(4):2104CrossRefGoogle Scholar
  25. 25.
    Eslamian M, Ashgriz N (2007) J Eng Mater Technol 129:130CrossRefGoogle Scholar
  26. 26.
    Okuyama K, Lenggoro IW (2003) Chem Eng Sci 58:537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations