Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1889–1893 | Cite as

Improved thermoelectric properties of La-doped Bi2Sr2Co2O9-layered misfit oxides

  • J. J. Shen
  • X. X. Liu
  • T. J. ZhuEmail author
  • X. B. ZhaoEmail author
Article

Abstract

Bi2Sr2−xLaxCo2O9 (x = 0, 0.02, 0.04, and 0.08) polycrystalline-layered misfit oxides have been prepared by solid-state reactions. Electrical property measurements indicated that all the samples are p-type semiconductors. The electrical conductivity decreased and the Seebeck coefficient increased with increasing temperature. The thermal conductivities were very low, only 0.6–0.7 W m−1 K−1 at room temperature. La doping was effective in increasing the Seebeck coefficient, reducing the thermal conductivity, and hence improving the thermoelectric performance. A highest dimensionless figure of merit ZT of 0.147 was obtained for Bi2Sr1.96La0.04Co2O9 sample at 737 K, about two times higher than that of the sample without La doping.

Keywords

Bi2Te3 Seebeck Coefficient Cobalt Oxide Dimensionless Figure Co2O9 Sample 

Notes

Acknowledgements

The study was supported by National “973” Program (2007CB607502), the National “863” Hi-tech Program of China (2007AA03Z234), and the Natural Science Foundation of China (50731006 and 50601022).

References

  1. 1.
    Zhao XB, Ji XH, Zhang YH, Zhu TJ, Tu JP, Zhang XB (2005) Appl Phys Lett 86:062111CrossRefGoogle Scholar
  2. 2.
    Shi X, Zhang W, Chen LD, Yang J (2005) Phys Rev Lett 95:185503CrossRefGoogle Scholar
  3. 3.
    Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Science 303:818CrossRefGoogle Scholar
  4. 4.
    Androulakis J, Migiakis P, Giapintzakis J (2004) Appl Phys Lett 84:1099CrossRefGoogle Scholar
  5. 5.
    Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685CrossRefGoogle Scholar
  6. 6.
    Chang WJ, Hsieh CC, Chung TY, Hsu SY, Wu KH, Uen TM (2007) Appl Phys Lett 90:061917CrossRefGoogle Scholar
  7. 7.
    Wang Y, Rogado NS, Cava RJ, Ong NP (2003) Nature 423:425CrossRefGoogle Scholar
  8. 8.
    Ishikawa R, Ono Y, Miyazaki Y, Kajitani T (2002) Jpn J Appl Phys Part 2 41:L337CrossRefGoogle Scholar
  9. 9.
    Sugiura K, Ohta H, Nomura K, Hirano M, Hosono H, Koumoto K (2006) Appl Phys Lett 88:082109CrossRefGoogle Scholar
  10. 10.
    Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Phys Rev B 62:166CrossRefGoogle Scholar
  11. 11.
    Shikano M, Funahashi R (2003) Appl Phys Lett 82:1851CrossRefGoogle Scholar
  12. 12.
    Harman TC, Walsh MP, LaForge BE, Turner GW (2005) J Electron Mater 34:L19CrossRefGoogle Scholar
  13. 13.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  14. 14.
    Landry ES, Hussein MI, McGaughey AJH (2008) Phys Rev B 77:184302CrossRefGoogle Scholar
  15. 15.
    Funahashi R, Shikano M (2002) Appl Phys Lett 81:1459CrossRefGoogle Scholar
  16. 16.
    Funahashi R, Matsubara I, Sodeoka S (2000) Appl Phys Lett 76:2385CrossRefGoogle Scholar
  17. 17.
    Funahashi R, Matsubara I (2007) Appl Phys Lett 79:362CrossRefGoogle Scholar
  18. 18.
    Terasaki I, Tanaka H, Satake A, Okada S, Fujii T (2004) Phys Rev B 70:214106CrossRefGoogle Scholar
  19. 19.
    Tsukada I, Nose M, Uchinokura K (1996) J Appl Phys 80:5691CrossRefGoogle Scholar
  20. 20.
    Mi JL, Zhu TJ, Zhao XB (2007) J Appl Phys 101:054314CrossRefGoogle Scholar
  21. 21.
    Kajitani T, Begum S, Yubuta K, Miyazaki Y, Igawa N (2007) The 26th international conference on thermoelectrics, Jeju Island, p 108Google Scholar
  22. 22.
    Mineshige A, Kobune M, Fujii S, Ogumi Z, Inaba M, Yao T, Kikuchi K (1999) J Solid State Chem 142:374CrossRefGoogle Scholar
  23. 23.
    Li ZH, Cheng G, Jian P, Liu PS (2007) J Rare Earth 25:301CrossRefGoogle Scholar
  24. 24.
    Cusack N, Kendall P (1958) Proc Phys Soc Lond 72:898CrossRefGoogle Scholar
  25. 25.
    Senaris-Rodriguez MA, Goodenough JB (1995) J Solid State Chem 116:224CrossRefGoogle Scholar
  26. 26.
    Nagao Y, Terasaki I (2007) Phys Rev B 76:144203CrossRefGoogle Scholar
  27. 27.
    Zhou AJ, Zhu TJ, Zhao XB, Chen HY, Müller E (2008) J Alloys Compd 449:105CrossRefGoogle Scholar
  28. 28.
    Xu GJ, Funahashi R, Shikano M, Matsubara I, Zhou YQ (2002) Appl Phys Lett 80:3760CrossRefGoogle Scholar
  29. 29.
    Venkatasubramanian R (2000) Phys Rev B 61:3091CrossRefGoogle Scholar
  30. 30.
    Majumdar A (2004) Science 303:777CrossRefGoogle Scholar
  31. 31.
    Adachi J, Kurosaki K, Uno M, Yamanaka S (2007) J Alloys Compd 432:7CrossRefGoogle Scholar
  32. 32.
    Xu GJ, Funahashi R, Shikano M, Matsubara IJ (2002) J Appl Phys 91:4344CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouChina

Personalised recommendations