Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1656–1660 | Cite as

Twinning and dislocation activity in silver processed by severe plastic deformation

  • Jeno GubiczaEmail author
  • N. Q. Chinh
  • J. L. Lábár
  • Z. Hegedűs
  • T. G. Langdon
Letter

Introduction

Severe plastic deformation (SPD) provides attractive procedures for producing ultrafine-grained (UFG) metals in bulk form [1, 2]. One of the most frequently used methods is equal-channel angular pressing (ECAP) where it is possible to produce relatively large bulk UFG metals having dimensions of several centimeters in all directions [3]. It is now well established that the high strength of metals processed by ECAP is due to their high dislocation densities and small grain sizes [4]. There have been extensive reports documenting the evolution of the microstructure during the processing by ECAP of pure face-centered cubic (fcc) metals having medium or high stacking fault energies (SFE). Thus, it was reported that in metals such as Al and Cu, the grain size reaches a minimum value and the dislocation density saturates after about 4 passes of ECAP [4]. Nevertheless, very little information is available at present describing microstructural evolution during ECAP in pure fcc...

Keywords

Dislocation Density Stack Fault Energy Etching Rate Lattice Dislocation Twin Density 

Notes

Acknowledgements

This work was supported in part by the Hungarian Scientific Research Fund, OTKA, Grant Nos. K67692 and K71594 (JG and NQC) and in part by the National Science Foundation of the United States under Grant No. DMR-0243331 (TGL). In addition, JG is grateful for the support of a Bolyai János Research Scholarship of the Hungarian Academy of Sciences and NQC thanks the Hungarian-American Enterprise Scholarship Fund for support. The authors thank Andrea Jakab for the preparation of the TEM samples and JG is grateful to Prof. Geza Tichy for helpful discussions.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881CrossRefGoogle Scholar
  4. 4.
    Chinh NQ, Gubicza J, Langdon TG (2007) J Mater Sci 42:1594. doi: https://doi.org/10.1007/s10853-006-0900-3 CrossRefGoogle Scholar
  5. 5.
    Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New YorkGoogle Scholar
  6. 6.
    Gubicza J, Chinh NQ, Lábár JL, Hegedüs Z, Xu C, Langdon TG (2008) Scripta Mater 58:775CrossRefGoogle Scholar
  7. 7.
    Gubicza J, Chinh NQ, Lábár JL, Hegedüs Z, Szommer P, Tichy G, Langdon TG (2008) J Mater Sci 43:5672. doi: https://doi.org/10.1007/s10853-008-2817-5 CrossRefGoogle Scholar
  8. 8.
    Gubicza J, Chinh NQ, Lábár JL, Dobatkin S, Hegedüs Z, Langdon TG (2009) J Alloys Compd. doi: https://doi.org/10.1016/j.jallcom.2008.07.200 CrossRefGoogle Scholar
  9. 9.
    Gubicza J, Chinh NQ, Szommer P, Vinogradov A, Langdon TG (2007) Scripta Mater 56:947CrossRefGoogle Scholar
  10. 10.
    Gubicza J, Dobatkin S, Bakai Z, Chinh NQ, Langdon TG (2007) Mater Sci Forum 567–568:181CrossRefGoogle Scholar
  11. 11.
    Müllner P, Solenthaler C (1997) Mater Sci Eng A 230:107CrossRefGoogle Scholar
  12. 12.
    Iwahashi Y, Wang JT, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143CrossRefGoogle Scholar
  13. 13.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328CrossRefGoogle Scholar
  14. 14.
    Furukawa M, Horita Z, Langdon TG (2007) Mater Sci Eng A 332:97CrossRefGoogle Scholar
  15. 15.
    Balogh L, Ribárik G, Ungár T (2006) J Appl Phys 100:023512CrossRefGoogle Scholar
  16. 16.
    Barna Á, Radnóczi G, Pécz B (1997) In: Amelinckx S, van Dyck D, van Landuyt J, van Tendeloo G (eds) Handbook of microscopy, VCH Verlagsgesellschaft mbH, Weinheim, p 751Google Scholar
  17. 17.
    Venables JA (1961) Philos Mag 6:379CrossRefGoogle Scholar
  18. 18.
    Cohen JB, Weertman J (1963) Acta Metall 11:996CrossRefGoogle Scholar
  19. 19.
    Mahajan S, Chin GY (1973) Acta Metall 21:1353CrossRefGoogle Scholar
  20. 20.
    Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ (2005) J Appl Phys 98:034319CrossRefGoogle Scholar
  21. 21.
    Wang ZW, Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Zhu YT, Horita Z, Langdon TG (2009) Scripta Mater 60:52CrossRefGoogle Scholar
  22. 22.
    Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeno Gubicza
    • 1
    Email author
  • N. Q. Chinh
    • 1
  • J. L. Lábár
    • 1
    • 2
  • Z. Hegedűs
    • 1
  • T. G. Langdon
    • 3
    • 4
  1. 1.Department of Materials PhysicsEötvös Loránd UniversityBudapestHungary
  2. 2.Research Institute for Technical Physics and Materials ScienceBudapestHungary
  3. 3.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations