Advertisement

Journal of Materials Science

, Volume 44, Issue 5, pp 1317–1323 | Cite as

Thermal and mechanical profile of cast films from waterborne polyurethanes based on polyether block copolymers

  • Cristiane C. Santos
  • Marcia C. Delpech
  • Fernanda M. B. CoutinhoEmail author
Article

Abstract

Environmental considerations have been the cause of increasing research and development of waterborne polymer systems for many different applications, particularly as coatings for several kinds of substrates. In this work, waterborne polyurethanes (WPU) based on block copolymers of ethylene glycol and propylene glycol (EG-b-PG), with 25% of EG segments, poly(propylene glycol), dimethylolpropionic acid, isophorone diisocyanate, and hydrazine, as chain extender, were obtained in the absence of organic solvent. Thermal stability, by thermogravimetry, and mechanical properties of cast films obtained from the aqueous dispersions were evaluated. The degradation process started above 200 °C for all samples. It was verified that the block copolymer improved the thermal resistance but diminished the mechanical resistance of the WPU materials.

Keywords

Block Copolymer Polyol Propylene Glycol Hard Segment Soft Segment 

Notes

Acknowledgements

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial support and Centro Técnico Aeroespacial/Instituto de Aeronáutica e Espaço (CTA/IAE) and Dow Química for the donation of IPDI and polyethers.

References

  1. 1.
    Ebrahimi MV, Barikani M, Mohaghegh SMS (2006) Iran Polym J 15:323Google Scholar
  2. 2.
    Pérez-Limiñana MA, Arán-Aís F, Torró-Palau AM, Orgilés-Braceló AC, Martín-Martínez JM (2005) Int J Adhes Adhes 25:507CrossRefGoogle Scholar
  3. 3.
    Coutinho FMB, Delpech MC, Garcia MEF (2002) Polym Test 21:719CrossRefGoogle Scholar
  4. 4.
    Mequanint K, Sanderson R (2006) Eur Polym J 42:1145CrossRefGoogle Scholar
  5. 5.
    Coutinho FMB, Delpech MC (2000) Polym Degrad Stab 70:49CrossRefGoogle Scholar
  6. 6.
    Mohaghegh SMS, Barikani M, Entezami AA (2006) Colloids Surf A 276:95CrossRefGoogle Scholar
  7. 7.
    Lee H, Wu S, Jeng R (2006) Colloids Surf A 276:176CrossRefGoogle Scholar
  8. 8.
    Jang JY, Jhon YK, Cheong IW, Kim JH (2002) Colloids Surf A 196:135CrossRefGoogle Scholar
  9. 9.
    Delpech MC, Coutinho FMB (2000) Polym Test 19:939CrossRefGoogle Scholar
  10. 10.
    Król P (2007) Prog Mater Sci 52:915CrossRefGoogle Scholar
  11. 11.
    Bao L, Lan Y, Zhang S (2006) J Polym Res 13:507CrossRefGoogle Scholar
  12. 12.
    Chuang FS, Tsen WC, Shu YC (2004) Polym Degrad Stab 84:69CrossRefGoogle Scholar
  13. 13.
    Coutinho FMB, Delpech MC, Alves TL, Ferreira AA (2003) Polym Degrad Stab 81:19CrossRefGoogle Scholar
  14. 14.
    Madorsky SL, Straus S (1959) J Polym Sci 36:183CrossRefGoogle Scholar
  15. 15.
    Wang T, Hsieh T (1997) Polym Degrad Stab 55:95CrossRefGoogle Scholar
  16. 16.
    Coutinho FMB, Delpech MC (1996) Polym Test 15:103CrossRefGoogle Scholar
  17. 17.
    Chattopadhyay DK, Raju KVSN (2007) Prog Polym Sci 32:352CrossRefGoogle Scholar
  18. 18.
    Wang CB, Cooper SL (1983) Macromolecules 16:775CrossRefGoogle Scholar
  19. 19.
    Coutinho FMB, Delpech MC, Garcia MEF (2004) Polim Ciên Tecnol 14:230CrossRefGoogle Scholar
  20. 20.
    Yoo S, Lee HS, Seo SW (1997) Pollimo 21:459Google Scholar
  21. 21.
    Coutinho FMB, Alves LS, Delpech MC (1998) Anais Assoc Bras Quím 47:255Google Scholar
  22. 22.
    Kim BK, Lee JC, Lee KH (1994) J Macromol Sci Pure Appl Chem A31:1241CrossRefGoogle Scholar
  23. 23.
    Kim BK, Kim TK (1991) J Appl Polym Sci 43:393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cristiane C. Santos
    • 1
  • Marcia C. Delpech
    • 1
  • Fernanda M. B. Coutinho
    • 1
    Email author
  1. 1.Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations